ues decreased, MI values increased monotonically. We then analyzed how these measurements correlated after raw values were categorized. Although ITA and MI values place individuals into 1 of 6 skin types, these classification systems are currently unrelated, with no consensus about which MI values belong to which FST group.4,5 We found that by placing participants with MI values of 750.0 or greater in FST VI, we observed a very strong correlation between these unrelated classification systems (Spearman $\rho = 0.95; P < .001$) (Figure, B).

Discussion | Determining skin type is necessary for understanding personal risk for sunburn and, by extension, skin cancer. Skin type is also important clinically because the cosmetic and medical industries have increased their use of laser applications in recent years.6 Because questions about FST are used to assign skin type and determine laser-based treatment variables, participants were asked questions about FST, and 538 (96.8%) stated that the sun affected their skin in some way. Of the 390 black participants, 373 (95.6%) acknowledged that they were photosensitive (Table). Only individuals who are not photosensitive are typically classified as FST VI, and our data confirm that most black participants should be classified as having an FST other than VI.7 As a result, we defined the MI for FST VI to include only individuals with an MI of 750.0 or greater. Strong correlation between MI and ITA values (Figure) suggests that either of these methods can be used to assess skin pigmentation depending on the relevance of the measurement outcome of the intended study. Recognizing this strong correlation will allow research by health care professionals, biomedical scientists, and public health researchers to be more applicable and comprehensible across disciplines.

Marcus Wilkes, BS
Caradee Y. Wright, PhD
Johan L. du Plessis, PhD
Anthony Reeder, PhD

Author Affiliations: Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York (Wilkes); Climate Studies, Modelling, and Environmental Health Research Group, Council for Scientific and Industrial Research, Pretoria, South Africa (Wright); Department of Geography, Geoinformatics, and Meteorology, University of Pretoria, Pretoria, South Africa (Wright); currently also with Environment and Health Unit, South African National Science Foundation (Wright); Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa (du Plessis); Cancer Society of New Zealand Social and Behavioural Research Unit, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand (Reeder).

Accepted for Publication: February 7, 2015.

Corresponding Author: Marcus Wilkes, BS, Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (mw699@cornell.edu).

Author Contributions: Mr Wilkes and Dr Wright had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study: concept and design: Wilkes, Wright, du Plessis. Acquisition, analysis, or interpretation of data: Wilkes, Wright, Reeder. Drafting of the manuscript: Wilkes, Wright, Reeder. Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis: Wilkes, Wright. Obtained funding: Wilkes, Wright.

Administrative, technical, or material support: Wright.
Study supervision: Wright.

Conflict of Interest Disclosures: Mr Wilkes is a doctoral student at Cornell University supported by a National Science Foundation Graduate Research Fellowship. Dr Wright was employed by the Council for Scientific and Industrial Research (CSIR) in South Africa. Dr Reeder is a member of the National Health Promotion Advisory Committee, Cancer Society of New Zealand, Inc.

Funding/Support: This study is supported by grant NSF DGE-1144153 from the National Science Foundation Graduate Research Fellowship Program (Mr Wilkes); by an international travel allowance cofunded through the Graduate Research Opportunities Worldwide and US Agency for International Development agencies; by CSIR Parliamentary Grant funding (Dr Wright); by the National Research Foundation Rated Researcher funding (Dr Wright); by an ad hoc grant from the Cancer Association of South Africa (Dr Wright); by the Cancer Society of New Zealand, Inc (Dr Reeder); and by the University of Otago (Dr Reeder).

Role of the Funder/Sponsor: The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the National Research Foundation.

Additional Contributions: We thank the participants in this study.

Correction: This article was corrected on August 12, 2015, to fix statistics in the Figure.

Google Search Trends and Skin Cancer: Evaluating the US Population’s Interest in Skin Cancer and Its Association With Melanoma Outcomes

Whether there is an association between population inquisitiveness in skin cancer and melanoma incidence, mortality, and the mortality to incidence ratio is unknown. Google Trends quantifies interest in topics at the population level by analyzing all search queries for a specific term, thus serving as an increasingly useful research tool.1 Search volume indexes (SVIs) are normalized values based on total searches during a specified period per selected region. We decided to use this innovative tool to evaluate whether population inquisitiveness on melanoma and skin cancer was correlated with a lower incidence, mortality, and mortality to incidence ratio.

Methods | We attained search data using Google Trends,2 extracting data from each state from January 1, 2010, to January 1, 2014, for the search terms skin cancer to represent a lay term and melanoma. Independent review board approval and patient informed consent were not required. The overall SVIs were normalized values based on total searches during a specified period per selected region. We decided to use this innovative tool to evaluate whether population inquisitiveness on melanoma and skin cancer was correlated with a lower incidence, mortality, and mortality to incidence ratio.
We used Pearson correlations to evaluate the association of skin cancer and melanoma SVI data from 2010 with melanoma incidence, mortality, and mortality to incidence ratios. Incidence and mortality values were taken from the 2011 US Cancer Statistics.3 We used data for melanoma because non-melanoma skin cancer data are not routinely reported. Data were managed using SPSS statistical software, version 20 (SPSS Inc), with significance set as $P < .05$.

Results | Searches increased during each summer yearly but have remained stable for 5 years (2010-2014) (Figure). Searches for melanoma mirrored the search volume for skin cancer. There is a significant correlation between skin cancer SVI for all states and melanoma mortality ($R = 0.345, P = .01$); however, no significant correlation was found between SVI and melanoma incidence ($R = 0.061, P = .67$). At the level of individual states, the 2010 SVI data for the terms skin cancer and melanoma did not significantly correlate with melanoma incidence and mortality. Moreover, no significant correlation was found between SVI and the melanoma mortality to incidence ratio ($R = 0.225, P = .13$). Of note, this analysis was not performed for Alaska, the District of Columbia, Nevada, or Vermont because neither mortality nor incidence was reported. States with the top 10 SVIs for skin cancer and melanoma are listed in the Table.

Discussion | Our study found an increase in the general populations’ interest in learning about skin cancer during the summer months. The level of interest for skin cancer and melanoma by state did not correlate with the melanoma mortality to incidence ratio, suggesting that increased search volumes may not be associated with early detection. The positive correlation between skin cancer SVI and increased melanoma mortality may be explained by increased searches from those directly or indirectly affected by advanced melanoma.

Several limitations exist in using Google Trends analysis as an indicator of general population interests in skin cancer. Google Trends analysis is restricted to only the segment of the population with access to the Internet. As of March 2014, this was estimated to be 87% of the US population.4 As a whole, Google search represents 64.5% of all US desktop search engine queries.5 Our study is additionally limited by the use of only melanoma data because nonmelanoma skin cancer data are not routinely reported in the United States. Regardless, analysis using melanoma data is still relevant because it provides an important benchmark for prevention and outcome.

Table. Top 10 States by Search Volume Index (SVI) for Skin Cancer

<table>
<thead>
<tr>
<th>State</th>
<th>SVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nevada</td>
<td>100</td>
</tr>
<tr>
<td>Tennesssee</td>
<td>77</td>
</tr>
<tr>
<td>Missouri</td>
<td>70</td>
</tr>
<tr>
<td>Alabama</td>
<td>70</td>
</tr>
<tr>
<td>South Carolina</td>
<td>70</td>
</tr>
<tr>
<td>Kansas</td>
<td>68</td>
</tr>
<tr>
<td>West Virginia</td>
<td>68</td>
</tr>
<tr>
<td>Kentucky</td>
<td>68</td>
</tr>
<tr>
<td>Ohio</td>
<td>67</td>
</tr>
<tr>
<td>Florida</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>SVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania</td>
<td>100</td>
</tr>
<tr>
<td>Tennessee</td>
<td>98</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>93</td>
</tr>
<tr>
<td>Alabama</td>
<td>90</td>
</tr>
<tr>
<td>Indiana</td>
<td>90</td>
</tr>
<tr>
<td>Kentucky</td>
<td>90</td>
</tr>
<tr>
<td>Maine</td>
<td>88</td>
</tr>
<tr>
<td>North Carolina</td>
<td>87</td>
</tr>
<tr>
<td>Missouri</td>
<td>87</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>87</td>
</tr>
</tbody>
</table>

Figure. Search Index Volumes (SVIs) for Skin Cancer and Melanoma

This graph depicts the SVI for the term skin cancer over time from 2010 to 2014. Peaks in search volume are seen during the summer months.
A better understanding of the US population's interest and means of accessing information regarding skin cancer is essential to improving educational and preventive initiatives. The use of the Google Trends application provides a novel means for determining this interest. Because the US population seeks information regarding skin cancer at a greater level during the summer months, this might be the most efficient time for educational and public health initiatives.

Romi Bloom, BS
Kyle T. Amber, MD
Shasa Hu, MD
Robert Kirshner, MD, PhD

Author Affiliations: Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida (Bloom, Hu, Kirshner); Department of Internal Medicine, MacNeal Hospital, Berwyn, Illinois (Amber).

Accepted for Publication: March 30, 2015.

Corresponding Author: Kyle T. Amber, MD, 10660 SW 75th Ave, Miami, FL 33156 (KAmber@med.miami.edu).

Author Contributions: Drs Amber and Kirshner had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Bloom, Amber. Acquisition, analysis, or interpretation of data: All authors. Drafting of the manuscript: Bloom, Amber. Critical revision of the manuscript for important intellectual content: Amber, Hu, Kirshner. Statistical analysis: Amber. Administrative, technical, or material support: Bloom. Study supervision: Amber, Hu, Kirshner.

Conflict of Interest Disclosures: None reported.

Indoor Tanning Devices in Student Apartment Complexes:
A Study of 2 Texas University Communities

Indoor tanning increases the risk for melanoma and nonmelanoma skin cancer.1,2 It is popular among college students; researchers estimate that 43% of university students had used indoor tanning in the prior year.3 A recent study of 125 US universities found that nearly half had indoor tanning available on campus or at apartments near campus, 96% of which offered indoor tanning without charge.4 We investigated the prevalence of apartments offering on-site free tanning as well as adherence to Texas state law prohibitions against indoor tanning for minors at The University of Texas at Austin (UT Austin) and Texas A&M University (TAMU). Specifically, we assessed compliance with the Texas Administrative Code that outlaw the use of indoor tanning devices by minors.5

Methods | We used the websites google.com, apartmentguide.com, collegestudentapartments.com, and daftlogic.com to find apartments within a 5-mile radius of the center of both campuses. From June 17, 2014, through July 30, 2014, one of us (D.B.) called each apartment to ascertain the approximate number of residents in the building who were students, whether free indoor tanning was offered, and whether indoor tanning for minors was allowed. This was not considered human subjects research, and the Institutional Review Board of the Office of Research Facilitation, Seton Family of Healthcare waived the requirement for approval.

Results | Fifty percent (12 of 24) of apartments within 1 mile of UT Austin and 31% (22 of 72) within a 2-mile radius of TAMU offer free on-site indoor tanning. Within a 5-mile radius, more than 11 500 renters near UT Austin and 17 500 renters near TAMU have access to free indoor tanning on site. Most of these locations were apartments with predominantly undergraduate and graduate students. Of these apartments, 18% (3 of 17) and 32% (8 of 25) near UT and TAMU, respectively, of personnel answered that no consent was needed for a 17-year-old to use the tanning facilities and 53% (9 of 17) and 48% (12 of 25), respectively, answered that minors were allowed to use the tanning facilities with parental consent. Only 1 of 17 and 1 of 25 apartment personnel at UT and TAMU, respectively, knew that use of indoor tanning facilities was prohibited for minors.

Discussion | Dermatologists have been effective in calling attention to the dangers of tanning salons for noncompliance with state and federal legislation.6 Our investigation suggests that noncompliance is also problematic when apartment buildings have indoor tanning beds and booths operated by office staff whose primary job is not monitoring these devices. The majority of employees that we questioned did not adhere to the Texas state regulation banning access to indoor tanning facilities to minors. This phenomenon of free on-site tanning in apartment buildings is substantial—more than 29 000 renters in close proximity to UT Austin and TAMU campuses have such access. When students go to college they are exposed to a plethora of risk behaviors. We can now add indoor tanning to this list.

Diana Bartenstein, AB
Dayna Diven, MD
James Allred, MD
Kellie Reed, MD

Author Affiliations: Medical student, Tufts University School of Medicine, Boston, Massachusetts (Bartenstein); Dermatology Program, The University of Texas Dell Medical School, Austin (Diven, Allred, Reed).

Accepted for Publication: March 30, 2015.

Corresponding Author: Diana Bartenstein, AB, 46 Sanderson Rd, Lexington, MA 02420 (diana.bartenstein@gmail.com).

Author Contributions: Ms Bartenstein and Dr Allred had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Copyright 2015 American Medical Association. All rights reserved.