Clinical and Mutational Spectrum of Neurofibromatosis Type 1–like Syndrome

Ludwine Messiaen, PhD
Suxia Yao, MD
Hilde Brems, MS
Tom Callens, BSc
Achara Sathienkijkanchai, MD
Ellen Denayer, MD
Emily Spencer, BSc
Pamela Arn, MD
Dusica Babovic-Vuksanovic, MD
Carolyn Bay, MD
Gary Bohele, MD
Bruce H. Cohen, MD
Luis Escobar, MD
Deborah Eampu, MS
Theresa Grebe, MD
Robert Greenstein, MD
Amy Pearn, MS
Vinodh Narayanan, MD
Cynthia Lim, MS
Marie McDonald, MD
Vinodh Narayanan, MD
Amy Pearn, MS
Robert Pedersen, MD
Berkley Powell, MD
Lawrence R. Shapiro, MD
David Skidmore, MD
David Tegay, DO
Heidi Thiese, MS
Elaine H. Zackai, MD
Raymon Vijzelaar, MSc
Koji Taniguchi, MD, PhD
Toranshin Ayada, MD, PhD
Fuyuki Okamoto, BSc
Akihiko Yoshimura, PhD
Annabel Parret, PhD
Bruce Korli, MD, PhD
Eric Legius, MD, PhD

Context Autosomal dominant inactivating sprouty-related EVH1 domain–containing protein 1 (SPRED1) mutations have recently been described in individuals presenting mainly with café au lait macules (CALMs), axillary freckling, and macrocephaly. The extent of the clinical spectrum of this new disorder needs further delineation.

Objective To determine the frequency, mutational spectrum, and phenotype of neurofibromatosis type 1–like syndrome (NFLS) in a large cohort of patients.

Design, Setting, and Participants In a cross-sectional study, 22 unrelated probands carrying a SPRED1 loss-of-function (LOF) mutation identified through clinical testing participated with their families in a genotype-phenotype study (2007-2008). In a second cross-sectional study, 1318 unrelated anonymous samples collected in 2003-2007 from patients with a broad range of signs typically found in neurofibromatosis type 1 (NF1) but no detectable NF1 germline mutation underwent SPRED1 mutation analysis.

Main Outcome Measures Comparison of aggregated clinical features in patients with or without a SPRED1 or NF1 mutation. Functional assays were used to evaluate the pathogenicity of missense mutations.

Results Among 40 SPRED1 LOF-positive individuals from the clinical cohort, 20 (50%; 95% confidence interval [CI], 34%-66%) fulfilled National Institutes of Health (NIH) NF1 diagnostic criteria based on the presence of more than 5 CALMs with or without freckling or an NF1-compatible family history. None of the 40 SPRED1 LOF-positive individuals (0%; 95% CI, 0%-7%) had discrete cutaneous or plexiform neurofibromas, typical NF1 osseous lesions, or symptomatic optic pathway gliomas. In the anonymous cohort of 1318 individuals, 34 different SPRED1 mutations in 43 probands were identified: 26 pathogenic mutations in 33 probands and 8 probable nonpathogenic missense or silent mutations in 10 probands. Of 94 probands with familial CALMs with or without freckling and no other NF1 features, 69 (73%; 95% CI, 63%-80%) had an NF1 mutation and 18 (19%; 95% CI, 12%-29%) had a pathogenic SPRED1 mutation. In the anonymous cohort, 1.9% (95% CI, 1.2%-2.9%) of individuals with the clinical diagnosis of NF1 according to the NIH criteria had NFLS.

Conclusions A high SPRED1 mutation detection rate was found in NF1–mutation–negative families with an autosomal dominant phenotype of CALMs with or without freckling and no other NF1 features. Among individuals in this study, NFLS was not associated with the peripheral and central nervous system tumors seen in NF1.

Author Affiliations are listed at the end of this article.

Corresponding Author: Ludwine Messiaen, PhD, Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, 720 20th St S, Birmingham, AL 35294 (lmessiaen@genetics.uab.edu).
NEUROFIBROMATOSIS TYPE 1–LIKE SYNDROME

Figure 1. Patients Included in the Study

A Clinical Cohort

- 22 Had a SPRED1 LOF mutation
- 27 NF1-negative probands with a SPRED1 mutation identified
- 16 Probands had family-specific SPRED1 LOF mutations
- 6 Probands had sporadic (de novo) SPRED1 LOF mutations
- 5 Had a SPRED1 missense mutation or a silent mutation, probably benign
- Family studies conducted in 13 relatives
- 23 Relatives identified
- 18 SPRED1 LOF-positive
- 5 SPRED1 LOF-negative

B Anonymous Cohort

- 1318 Had no NF1 mutation identified and had SPRED1 mutation testing
- 1114 Had an NF1 mutation identified
- 33 Had 1 of 26 different SPRED1 LOF mutations
- 1285 Had no SPRED1 LOF mutation, including 9 probands with 1 of 7 different missense mutations without LOF, probably benign, and 1 with a silent mutation, probably benign
- 2432 Unrelated patients referred for NF1 genetic testing

LOF indicates loss of function; NF1, neurofibromatosis type 1; SPRED1, sprouty-related EVH1 domain–containing protein 1.

Health (NIH) NF consensus conference in 1988,5 were updated in 1997,6 and are widely used to make the diagnosis using information obtained from physical examination, family history, and radiologic studies.

Neurofibromin is a negative regulator of RAS and pathogenic NF1 (NM_000267.2) mutations result in increased active RAS (guanosine triphosphate–bound RAS) and increased signaling through the downstream effectors such as the mitogen-activated protein kinase (MAPK) pathway.7 Recently, a genetically distinct activated protein kinase (MAPK) pathway was discovered (OMIM 611431)7,8 and designated the disorder might have been biased or underestimated. Similarly, the study by Spurlock et al9 and Pasmant et al7 primarily focused on SPRED1 analysis in patients with the mild pigmentary phenotype. Given the absence of neurofibromas in any patient described so far,9,8 it has been proposed to refer to this new syndrome as Legius syndrome (as named in OMIM 611431)7,8 and discontinue referring to it as neurofibromatosis type 1–like syndrome (NFLS).

In this study, we determined the phenotype in 22 unrelated probands and 18 relatives carrying a SPRED1 loss-of-function (LOF) mutation identified through clinical genetic testing. In addition, we carried out a cross-sectional study in an anonymous cohort of 1318 unrelated patients referred for NF1 genetic testing, in whom no NF1 mutation was found, allowing delineation of the SPRED1 mutational spectrum and estimation of the frequency of NFLS.

METHODS

The flow of participants included in the studies is shown in Figure 1.

Clinical Cohort

In a cross-sectional study, a SPRED1 LOF mutation was identified in 26 NF1-negative probands (with clinical NF1 testing before July 2007) for whom a blood sample was received (August 2007–September 2008) for clinical SPRED1 mutation testing (this test became available by August 2007 and is described at http://www.genetics.uab.edu/medgenomics). Probands were referred from 19 different centers in the United States and Canada. Written informed consent to collect phenotypic and genotypic data was obtained from study participants and parents or guardians of children. Clinical notes and phenotypic information as available through the referring physician were reviewed.

Height and head circumference at a given age were converted to percentiles using the Centers for Disease Control and Prevention US growth charts (http://www.cdc.gov/nchs/data/ad/ad314.pdf). An individual was recorded as macrocephalic when head circumference was above the 97th percentile. An individual was recorded as having relative macrocephaly when head circumference was above the 97th percentile at the age when height would have been at the 50th percen-
Table 1. Aggregated Clinical Features in 40 Individuals From 22 Families Carrying a Pathogenic SPRED1 LOF Mutation, by Age Group (Clinical Cohort)

<table>
<thead>
<tr>
<th>Age, y</th>
<th>Total</th>
<th>F/S/U</th>
<th>No. of Patients With Size and No. of CALMs</th>
<th>None</th>
<th>Relative</th>
<th>Axillary and Inguinal</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>21</td>
<td>15/5/1</td>
<td>20/21</td>
<td>3/21</td>
<td>4/21</td>
<td>2/21</td>
<td>13/21</td>
</tr>
<tr>
<td>8-19</td>
<td>5</td>
<td>4/1/0</td>
<td>5/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>4/5</td>
</tr>
<tr>
<td>20-68</td>
<td>14</td>
<td>14/0/0</td>
<td>10/14</td>
<td>2/14</td>
<td>3/14</td>
<td>0/14</td>
<td>9/14</td>
</tr>
</tbody>
</table>

Abbreviations: CALMs, café au lait macules; F, familial; LOF, loss of function; NF1, neurofibromatosis type 1; NIH, National Institutes of Health; S, sporadic, SPRED1, sprouty-related EHH1 domain-containing protein 1; U, unknown.

aOther features included bilateral polyactyly, hands and feet (n=1); pectus excavatum (n=3); hyperactivity (n=3); attention deficit (n=1); speech/language delay (n=4); pervasive developmental delay; seizures; hypotonia (n=1); simple ears (n=1); and bright blue eyes, down-slanting palpebral fissures, short neck, and Noonan syndrome-like (n=1).

bIn addition, 1 individual with 4 CALMs larger than 5 mm and 1 individual (age 2 y) with no spots.

cOther features included mental stenosis, hypertelorism, hearing loss, and speech delay (n=1); attention deficit (n=1); and large venous anomaly and progressive dystonia (n=1).

dOne individual with no head circumference information.

eOther features included mild hearing loss (n=2); congenital pulmonic stenosis, mitral valve prolapse (n=1); angiolipoma, terosynovial giant cell tumor (n=1); dermoid tumor ovary (n=1); history of seizures (n=1); vascular anomaly leg (n=1); and 2 lipomas (n=1).

fIn addition, 2 individuals with 1 to 2 CALMs and 3 individuals with 4 to 5 CALMs.

tile. Information on race/ethnicity was recorded by the referring health care clinician as African American, Asian, Hispanic, Native American, Caucasian, other (eg, Pacific Islander) or “not provided.” Additional detail on ethnic background was requested if essential for interpretation of the genetic results. The study was approved by the University of Alabama at Birmingham (UAB) Institutional Review Board.

Anonymous Cohort of NF1-Positive and NF1-Negative Samples

Samples received at the UAB Medical Genomics Laboratory for NF1 genetic testing (August 2003–July 2007) were included in an anonymous study if a phenotypic checklist (http://www .genetics.uab.edu/medgenomics) summarizing the NF1-related clinical signs at the time of blood sampling had been completed by the referring physician. This is a cross-sectional, referral-based study with samples received from more than 250 different referral centers in the United States (85%), Canada (8%), Latin America (2%), Australia and New Zealand (2%), Asia (1.5%), and Europe (1.5%). This inevitably implies heterogeneity in the quality of the data set, which is based on these phenotypic data forms. In total, 2432 unrelated samples with phenotypic data were available by July 2007, which equals approximately 85% of samples received.

Search for genotype-phenotype correlations using a Microsoft Access (Microsoft, Redmond, Washington) database containing phenotypic and mutation data was approved by the UAB Institutional Review Board. The following data were entered through the password-protected Access database: year of birth, age of the individual at time of completion of the phenotypic checklist, country of origin, sex, race/ethnicity, sporadic or familial, standardized information pertaining to the NF1-related signs, and a unique identifier not linked to date of birth, name, or other database connected to such information. The same unique identifier was labeled on an aliquot of the left-over sample from the patients referred for NF1 clinical testing. Entries were exported to an Microsoft Excel table format to facilitate the subsequent statistical analyses.

In 1114 of 2432 individuals, an NF1 mutation had been identified. Anonymous DNA samples from 1318 NF1-negative probands underwent further research-based SPRED1 mutation analysis, resulting in 3 groups of phenotypic data: NF1 mutation–positive, SPRED1 LOF mutation–positive, and NF1 and SPRED1 LOF mutation–negative cohorts. This NF1-negative cohort is not biased toward the initially reported phenotype in patients with a SPRED1 mutation. Genetic research on the anonymous samples was approved by the UAB Institutional Review Board. The 26 probands in the clinical cohort are most likely also part of the anonymous cohort because these patients previously had an NF1-negative test result during the study period.

Mutation Analysis, Functional Analysis of Missense Mutations, and Homology Modeling

Comprehensive NF1 and SPRED1 mutational testing was performed as described in the eAppendix and eTable 1. The pathogenicity of identified missense mutations was analyzed using 2 different functional assays: (1) neurite outgrowth of pheochromocytoma 12 (PC12) cells in vitro after stimulation with nerve growth factor and (2) Elk-1 activation and phosphorylation.
RESULTS

Clinical Cohort

In the clinical cohort, a \textit{SPRED1} mutation was identified in 27 \textit{NF1}-negative probands (eTable 2); 22 had a \textit{SPRED1} LOF mutation (including 2 LOF missense mutations: p.Thr102Arg and p.Pro415Ala); 4 of 6 missense mutations and 1 silent mutation were classified as rare, probably benign variants: p.Cys74Arg, p.Ser149Asn, p.Asp398Asn, p.Cys433Tyr, and c.42T>C (eTable 3). Forty-three relatives of the 22 probands with a \textit{SPRED1} LOF mutation participated in the study and 18 of 43 carried the family-specific \textit{SPRED1} mutation. Six of 22 were de novo cases (27%; 95% CI, 11%-50%). Phenotypic details of 40 individuals with a \textit{SPRED1} LOF mutation are provided in Table 1 (aggregated data) and eTable 2 (individual data); 14 of 40 had more than 5 CALMs and axillary/inguinal freckling. An additional 6 individuals fulfill \textit{NF1} criteria if family history is taken into account. The majority of individuals (35/40) had more than 5 CALMs even at a young age. Axillary/inguinal freckling was mild or faint in 7 of 14 patients with freckling (Figure 2A).

Noonan syndrome (OMIM 163950); an autosomal dominant disorder characterized by a variable combination of facial dysmorphism, short stature, pectus deformity, and congenital heart defects12) was suspected in 1 child (individual S10-III1; individual/family numbering is shown in eTable 2), a mild pulmonic valve stenosis was present in individual S11-1,2, and mild to severe pectus excavatum was seen in 3 individuals (Figure 2B and eTable 2). Five children had abnormal language and speech development and 5 were reported to have attention deficit, hyperactivity, or both. None of the individuals carrying a \textit{SPRED1} mutation showed neurofibromas, typical osseous lesions, or a symptomatic optic pathway glioma.

We observed 1 occurrence each of tenuousynial giant cell tumor, angiolipoma, breast cancer, and dermoid tumor of the ovary and 2 lipomas in 1 individual (eTable 2). No tumor material was available to study the causal involvement of \textit{SPRED1}.

In family S23, the \textit{NF1} mutation c.2755delG had previously been identified in a classically affected patient, S23-II1 (eTable 2), but no \textit{NF1} mutation was found in several of his relatives with \textit{NF1} signs (individuals S23-II2, S23-II3, S23-I2, and S23-II1). A truncating \textit{SPRED1} mutation was found in individual S23-I1 (the younger brother of individual S23-II1), in individual S23-I2 (the mother of individual S23-II2 and S23-I1), and in individual S23-II3 (the child of individual S23-II3) but was absent in individuals S23-I2 and S23-II1.

Anonymous Cohort

Spectrum of \textit{SPRED1} Mutations. We identified 34 different \textit{SPRED1} mutations in 43 probands in the anonymous cohort of 1318 unrelated \textit{NF1}-negative patients (eFigure 1). The majority of mutations (23/34) are predicted to result in a premature stop codon. Furthermore, 1 in-frame deletion (c.242_256del15bp; p.Ile81_Val85del), 9 different missense mutations, and 1 silent mutation were found. Mutations were spread over the entire gene; 23 are novel. Eight different mutations (p.Arg16X; p.Arg18X, p.Arg24X, p.Arg64X, p.Arg117X, p.Thr313Met, p.Arg325X, and p.Asp398Asn), accounting for 12 of the 43 mutations, can be attributed to deamination at methylated CpG dinucleotides. No \textit{SPRED1} copy number changes were detected.

\textit{SPRED1} Missense Mutation. The phenotype of individuals carrying a (probably) benign missense mutation is described in eTable 3.

and secondary structure prediction by in silico homology modeling, are summarized in the eAppendix, eTable 4, and eFigure 2, eFigure 3, and eFigure 4.

Phenotypic Characteristics. We identified 33 LOF SPRED1 mutations (eFigure 1) in an anonymous NF1-negative cohort of 1318 unrelated probands presenting with a broad range of NF1-related signs, not biased toward the phenotype initially described in patients with a SPRED1 mutation.\(^a\) Demographic and phenotypic features of a cohort with and without SPRED1 mutations were compared with a cohort of 1114 patients with a definitive NF1 mutation (TABLE 2 and TABLE 3). Mean age was 14.9 years in the NF1-positive cohort, 9.5 years in the SPRED1-positive cohort, and 12.4 years in the NF1/SPRED1-negative cohort. The average number of NIH criteria fulfilled was 2.39 in the NF1-positive cohort, 1.94 in the SPRED1-positive cohort, and 0.89 in the NF1/SPRED1-negative cohort.

The high proportion of sporadic patients likely reflects the greater uptake of genetic testing among patients with diagnostic uncertainties in the absence of a family history. Thirty-one of 33 SPRED1 LOF-positive individuals had more than 5 CALMs with or without freckling and no other NF1 criteria, 13 (39%; 95% CI, 23%-58%) of which were sporadic cases.

The ratio of SPRED1/NF1 mutations detected in the total group of 2432 patients was 33/1114 (3.0%; 95% CI, 2.0%-4.1%) vs 211/1318 (16.3%; 95% CI, 12.0%-21.0%) in familial cases, yielding a 5.4-fold increased risk of a SPRED1 mutation (95% CI, 2.8%-10.6%) in the familial group vs 13/1114 (1.2%; 95% CI, 0.8%-1.8%) in the sporadic group.

Of 1086 patients fulfilling NIH criteria for clinical diagnosis of NF1, an NF1 mutation was found in 823 (76%; 95% CI, 73%-78%), a SPRED1 mutation in 21 (1.9%; 95% CI, 1.2%-2.9%), and no NF1/SPRED1 mutation in 243 (22%; 95% CI, 20%-25%), with 211 of 243 being sporadic cases.

No SPRED1 mutations were found in any NF1-negative patients with neurofibromas, optic pathway glioma, Lisch nodules, or typical osseous lesions. The sensitivity, specificity, and positive and negative predictive values to detect a SPRED1 mutation in the analyzed NF1-negative cohort are reported in eTable 5. The highest positive predictive value was observed in familial patients with more than 5 CALMs with or without freckling and no other criteria (0.720; 95% CI, 0.506-0.879), with a specificity of 0.545 (95% CI, 0.364-0.719) and a specificity of 0.995 (95% CI, 0.988-0.998).

COMMENT

We investigated the clinical spectrum of a neurofibromatosis type 1–like syndrome, recently named Legius syndrome (OMIM 611431), and estimated its frequency relative to NF1 in an anonymous cohort of patients with a broad range of signs typically found in NF1. Individuals with SPRED1 mutations presented with multiple CALMs with or without freckling. The dermatologic phenotype in young children with a SPRED1 mutation could not be differentiated from NF1 and half of individuals (20/40) with a SPRED1 mutation fulfilled the NF1 diagnostic criteria based on presence of more than 5 CALMs with or without skinfold freckling and with or without familial history.

Most patients presented with a mild phenotype compared with NF1, although in family S24, severe progressive dystonia, a large temporal venous anomaly, and a vascular anomaly were present. In the report by Spurlock et al.,\(^8\) 1 patient had an inguinal hemangioma, which is of interest given the recently identified association of RASA1 with familial cases of NF1.

Table 2. Demographic Characteristics of Anonymous Cohorts of NF1-Positive Patients, NF1- and SPRED1 LOF–Negative Patients, and SPRED1 LOF–Positive Patients\(^a\)

<table>
<thead>
<tr>
<th>Demographic Subgroup</th>
<th>No. of Patients</th>
<th>NF1-Positive Cohort (n = 1114)</th>
<th>NF1-/SPRED1 LOF–Negative Cohort (n = 1285)(^b)</th>
<th>SPRED1 LOF–Positive Cohort (n = 33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td></td>
<td>525</td>
<td>662</td>
<td>24</td>
</tr>
<tr>
<td>0-7 (n = 1211)</td>
<td></td>
<td>236</td>
<td>399</td>
<td>5</td>
</tr>
<tr>
<td>8-19 (n = 640)</td>
<td></td>
<td>353</td>
<td>224</td>
<td>4</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>573</td>
<td>585</td>
<td>16</td>
</tr>
<tr>
<td>Female (n = 1174)</td>
<td></td>
<td>541</td>
<td>700</td>
<td>17</td>
</tr>
<tr>
<td>Male (n = 1258)</td>
<td></td>
<td>33</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td>55</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>African American (n = 164)</td>
<td></td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Asian (n = 49)</td>
<td></td>
<td>35</td>
<td>696</td>
<td>18</td>
</tr>
<tr>
<td>Hispanic (n = 108)</td>
<td></td>
<td>45</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>Native American (n = 7)</td>
<td></td>
<td>32</td>
<td>383</td>
<td>8</td>
</tr>
</tbody>
</table>

Abbreviations: LOF, loss of function; NF1, neurofibromatosis type 1; SPRED1, sprouty-related EVH1 domain–containing protein 1.

\(^a\) The first column indicates how many patients with a specific trait/phenotype (age, sex, CALMs only, etc) are present in the entire cohort of 2432 patients. The second column indicates how many of the patients with a specific trait/phenotype as specified in column 1 carry an NF1 mutation. The third column indicates how many of the patients with a specific trait/phenotype as specified in column 1 do not carry an NF1 mutation or SPRED1 LOF mutation. The fourth column indicates how many of the patients with a specific trait/phenotype as specified in column 1 carry a SPRED1 mutation.

\(^b\) This cohort includes 9 patients with a SPRED1 missense mutation classified as benign or likely benign. This cohort also includes 16 patients (none of whom had a SPRED1 LOF or missense mutation classified as benign or likely benign) with more than 5 CALMs and acute lymphoblastic leukemia (aged 3 y), astrocytoma (2 patients aged 11 and 54 y), breast cancer and frequenting (2 patients aged 47 and 39 y), gastrointestinal stromal tumors (aged 37 y), glioblastoma multiforme and frequenting (aged 12.5 y), juvenile xanthogranuloma (aged 3.4 y), neuroblastoma (2 patients aged 6 and 5.5 y), ovarian cysts (aged 15 y), malignant thoracic spinal tumor (aged 15 y), parathyroid tumor (aged 28 y), pituitary adenoma and frequenting (2 patients aged 25 and 59 y), Wilms tumor (aged 7 y), and including 12 patients with 1 to 5 CALMs and neuroblastoma (aged 5 mo), rhabdomyosarcoma (aged 3.5 y), oligodendroglioma (aged 17 y), brainstem glioma (2 patients aged 13 and 15 y), epidermoidoma (aged 10 y), ganglieneurooma (aged 24 y), lipoma (aged 14 y), multiple meningoceles in craniofacial junction and thoracic spine (aged 10 y), thalamic glioma (aged 12.5 y), tubular adenoma (aged 39 y), and colon polyps and lipomas (aged 46 y).

©2009 American Medical Association. All rights reserved.
NEUROFIBROMATOSIS TYPE 1–LIKE SYNDROME

with abnormal angiogenesis. RASA1 (p120-RASGAP; OMIM 139150), another guanosine triphosphate–ase–activating protein, down-regulates the RAS-MAPK pathway similarly to neurofibromin.13 The potential association of NFLS with vascular malformations warrants further investigation. The RAS-MAPK pathway syndromes show a large variability in tumor predisposition, congenital malformations, and intellectual disabilities.13

Because SPRED1 is involved in regulation of the MAPK pathway, patients with SPRED1 mutations may be at

<table>
<thead>
<tr>
<th>Demographic Subgroup</th>
<th>NF1-Positive Cohort (N = 2432)</th>
<th>NF1/SPRED1 LOF–Negative Cohort (n = 1285)</th>
<th>SPRED1 LOF–Positive Cohort (n = 33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporadic (n = 2109)</td>
<td>863 (40.9) [38.8-43.0]</td>
<td>1233 (56.5) [56.3-60.6]</td>
<td>13 (0.6) [0.3-1.1]</td>
</tr>
<tr>
<td>>5 CALMs (n = 1607)</td>
<td>970 (60.4) [57.9-62.8]</td>
<td>606 (37.7) [35.3-40.1]</td>
<td>31 (1.9) [1.3-2.7]</td>
</tr>
<tr>
<td>Sporadic and >5 CALMs (n = 1354)</td>
<td>751 (55.5) [52.8-58.1]</td>
<td>590 (43.6) [40.9-46.3]</td>
<td>13 (0.9) [0.5-1.6]</td>
</tr>
<tr>
<td>Sporadic, >5 CALMs with or without freckling, and no other NIH criterion (n = 957)</td>
<td>414 (43.3) [40.1-46.5]</td>
<td>530 (55.4) [52.1-56.8]</td>
<td>13 (1.3) [0.7-2.3]</td>
</tr>
<tr>
<td>Sporadic, >5 CALMs with or without freckling, and >1 additional NIH criterion (n = 389)</td>
<td>337 (86.6) [82.8-89.9]</td>
<td>52 (13.4) [10.1-17.2]</td>
<td>0 [0-0.8]</td>
</tr>
<tr>
<td>Familial and >5 CALMs (n = 253)</td>
<td>219 (86.6) [81.7-90.5]</td>
<td>16 (6.3) [3.7-10.1]</td>
<td>18 (7.1) [4.3-11.0]</td>
</tr>
<tr>
<td>Familial, >5 CALMs with or without freckling, and no additional NIH criterion (n = 94)</td>
<td>69 (73.4) [63.3-82.0]</td>
<td>7 (7.5) [3.0-14.7]</td>
<td>18 (19.1) [11.7-25.6]</td>
</tr>
<tr>
<td>Familial, >5 CALMs with or without freckling, and >1 additional NIH criterion (n = 159)</td>
<td>150 (94.3) [89.5-97.4]</td>
<td>9 (5.7) [2.6-10.5]</td>
<td>0 [0-1.9]</td>
</tr>
<tr>
<td>With neurofibromas (n = 659)</td>
<td>475 (72.1) [68.5-75.5]</td>
<td>184 (27.9) [24.5-31.5]</td>
<td>0 [0-1.9]</td>
</tr>
<tr>
<td>With neurofibromas only (n = 145)</td>
<td>27 (18.6) [12.6-25.9]</td>
<td>118 (81.4) [74.0-87.4]</td>
<td>0 [0-1.9]</td>
</tr>
<tr>
<td>With OPG (n = 166)</td>
<td>79 (47.6) [39.8-55.5]</td>
<td>87 (52.4) [44.5-60.2]</td>
<td>0 [0-1.9]</td>
</tr>
<tr>
<td>With OPG only (n = 74)</td>
<td>3 (4.1) [0.8-11.4]</td>
<td>71 (95.9) [88.6-99.2]</td>
<td>0 [0-1.9]</td>
</tr>
<tr>
<td>Sporadic OPG and >5 CALMs with or without freckling only (n = 27)</td>
<td>23 (85.2) [66.3-95.8]</td>
<td>4 (14.8) [4.2-33.7]</td>
<td>0 [0-1.9]</td>
</tr>
<tr>
<td>Sporadic OPG, 0-5 CALMs, and >1 additional NIH criterion (n = 65)</td>
<td>53 (81.5) [70.0-90.1]</td>
<td>12 (18.5) [9.9-30.0]</td>
<td>0 [0-1.9]</td>
</tr>
<tr>
<td>With Lisch nodules (n = 81)</td>
<td>46 (56.8) [45.3-67.7]</td>
<td>35 (43.2) [32.2-54.7]</td>
<td>0 [0-1.9]</td>
</tr>
<tr>
<td>With osseous lesion (n = 218)</td>
<td>291 (21.6) [19.5-23.9]</td>
<td>1042/1345 (77.5) [75.1-79.7]</td>
<td>12 (0.9) [0.5-1.6]</td>
</tr>
<tr>
<td>With OPG (n = 224)</td>
<td>219 (97.8) [94.9-99.3]</td>
<td>5 (2.2) [0.7-8.1]</td>
<td>0 [0-1.3]</td>
</tr>
</tbody>
</table>
increased risk of developing specific tumors or learning problems. In our study, 5 children had abnormal language and speech development and 5 were reported to have attention deficit/hyperactivity. The importance of SPRED1 for hippocampal-dependent learning was recently documented in mice. Future studies need to systematically investigate potential problems with speech, learning, and behavior in children with SPRED1 mutations.

None of the individuals in our study had neurofibromas, typical osseous lesions, or symptomatic optic pathway gliomas. In this and previous studies, no systematic occurrence of any tumor type was observed, except possibly subcutaneous lipomas in adults, also frequently observed in the general population. Tenosynovial giant cell tumor, dermoid tumor of the ovary, Wilms tumor, tubular colon adenoma, acute leukemia, and nonsmall cell lung cancer were each observed in only 1 individual once.

Combining data on 33 adults with NFLS from this study and in previous reports results in a post hoc power estimate of 80% to detect complications occurring in at least 5% of affected adults. Using the binomial distribution, the chance of detecting 2 cases with a specific complication with a prevalence of 5% in a group of 53 individuals is 76%. Combining data from this and previous reports on individuals aged 5 years or older with a SPRED1 mutation (n = 79), we estimated, in post hoc power calculation, that this sample size would allow detecting complications with a prevalence of at least 3% with a power estimate of 80%. None of these 79 individuals had evidence of plexiform neurofibroma, discrete neurofibroma, or symptomatic optic pathway glioma, suggesting that the frequency of these complications is lower than in NF1 (plexiform neurofibromas, 24%; discrete neurofibromas, 53%; symptomatic optic pathway gliomas, 4.3%).

However, even these pooled data are underpowered to detect rare complications associated with a prevalence of only 1%; a study of 250 well-characterized, preferably adult patients would be needed. Other limitations of the present study are the referral bias (mainly diagnostic uncertainty) and heterogeneity of clinical data (many clinical NF experts involved).

As of July 2007, no NF1 mutation had been identified through clinical testing in 1318 of 2432 unrelated patients who fulfilled inclusion criteria for further anonymous studies at the UAB Medical Genomics Laboratory. Many samples were submitted because of a diagnostic uncertainty: 55% fulfilled fewer than 2 NIH criteria and 87% were sporadic. SPRED1 analysis of this anonymous NF1-negative cohort revealed a SPRED1 LOF mutation in 33 of 1318. No SPRED1 copy number changes were found in this or previous studies but we recently identified 3 different multixen deletions, indicating the need for dosage analysis in the clinical setting (L.M., unpublished data).

Clinical features of the cohort with a SPRED1 LOF mutation (n = 33) were compared with the cohort without mutations in NF1 and SPRED1 (n = 1285) and with the cohort with an NF1 mutation (n = 1114). Twenty-one of 1087 individuals (approximately 2%) fulfilling NIH diagnostic criteria in the entire anonymous cohort carried a SPRED1 mutation. All individuals carrying a pathogenic SPRED1 mutation were found in the subgroup of patients with multiple CALMs with or without freckling but fulfilling no other NIH criterion. No SPRED1 mutations were found if patients had neurofibromas, optic pathway glioma, ophthalmologically proven Lisch nodules, or a typical NF1-associated osseous lesion. The data from this anonymous cohort further underscore that association of these features with NFLS must be rare.

In this study of 957 sporadic patients with CALMs with or without freckling and no other criterion, 414 (43%) had a NF1 mutation in the blood and 13 (1.3%) had a SPRED1 mutation. An NF1 mutation was found in 150 of 159 familial patients (94%) with more than 5 CALMs with or without freckling and an additional criterion, usually the presence of neurofibromas, but in 69 of 94 familial patients (73%) with CALMs with or without freckling only. In this last group, 18 of 94 families (19%) showed a SPRED1 mutation, and in 7 of 94 (7%), no mutation could be identified in NF1 or SPRED1.

The NIH NF1 criterion, originally designed to help identify families suitable for linkage studies that led to the positional cloning of the NF1 gene, are widely used and allow establishment of a clinical diagnosis of NF1 in most cases. In individuals with CALMs with or without freckling and no other specific distinguishing features, presenting sporadically or with a family history of CALMs with or without freckling only, the NIH criteria cannot reliably distinguish NF1 from NFLS. In such patients, a correct diagnosis has important implications for prognosis, counseling, and potential prenatal genetic diagnosis. Although an NF1 diagnosis may become apparent with the passage of time, the diagnosis will remain uncertain for individuals who do not develop other signs of NF1.

Molecular genetic testing can resolve the diagnosis in most such cases. In case of diagnostic uncertainty, we recommend that NF1 should be analyzed first and, if negative, SPRED1 testing should be considered in patients with CALMs with or without freckling and no other NF1 diagnostic features. Identification of a SPRED1 mutation may relieve a psychological burden from families who otherwise would be in a waiting mode for potential serious NF1-associated manifestations.

We currently are conservative regarding the clinical surveillance of SPRED1-positive patients and recommend the same medical follow-up as that for patients with NF1. Less stringent surveillance may possibly be recommended for these patients if clinical data from several hundreds of patients confirm the low frequency of benign and malignant tumors.
NEUROFIBROMATOSIS TYPE 1–LIKE SYNDROME

For all of these reasons, it is important that clinicians, including general practitioners, clinical geneticists, pediatricians, ophthalmologists, dermatologists, neurologists, and oncologists, who are involved in the care, diagnosis, and treatment of individuals with NF1, should be aware that Legius syndrome can resemble NF1.

Author Affiliations: Department of Genetics, University of Alabama at Birmingham (Drs Messiaen, Yao, Sathienkjkanchai, and Korf, Mr Callens, and Ms Spen cer); Department of Human Genetics, Catholic University Leuven, Leuven, Belgium (Ms Brems and Drs Denayer and Legius); Nemours Children’s Clinic, Jacksonville, Florida (Dr Am and Ms Eunpu); Medical Genetics, Mayo Clinic Rochester, Rochester, Minnesota (Dr Babovic-Vuskovic); Division of Clinical/Biochemical Genetics and Dysmorphology, Department of Pediatrics, University of Kentucky, Lexington (Dr Bay);Discoll Children’s Hospital, Corpus Christi, Texas (Dr Bobeje); Neurological Institute, Cleveland Clinic, Cleveland, Ohio (Dr Cohen); Medical Genetics and Neurodevelopmental Center, St Vincent Children’s Hospital, Indianapolis, Indiana (Dr Escobar); Phoenix Genetics Program and Child Neurology, St Joseph’s Hospital and Medical Center, Phoenix, Arizona (Dr Grebe and Narayanan and Ms Lim); Department of Genetics and Developmental Biology, Division of Human Genetics, University of Connecticut Health Center, West Hartford (Dr Greenspan); Division of Human Genetics, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia (Dr Hachen and Dr Zackai); Division of Genetics, Children’s Hospital Boston, Boston, Massachusetts (Dr Iorns); Division of Medical Genetics and Inherited Metabolic Disease, Department of Pediatrics, New York Medical College and Maria Fareri Children’s Hospital of Westchester Medical Center, Valhalla, New York (Dr Kronn and Shapi ro); Department of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada (Dr Lemire and Ms Pearn); Genetic Services, Group Health Cooperative, and Department of Pathology, University of Washington, Seattle (Dr Leppig and Ms These); Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (Dr McDonald); Tripler AMC, Honolulu, Hawaii (Dr Pederson); Children’s Hospital Central California, Madera (Dr Powell); Maritime Medical Genetics Service, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada (Dr Skidmore); New York College of Osteopathic Medicine, Old Westbury, New York (Dr Tegay); MRC-Holland, Amsterdam, the Netherlands (Mr Vizelaar); Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Ky ushu University, Fukuoka, Japan (Drs Taniguchi, Ayada, and Yoshimura and Mr Okamoto); Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan (Drs Taniguchi and Yoshimura); Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo, Japan (Drs Taniguchi and Yoshimura); Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (Dr Parret).

Author Contributions: Drs Messiaen and Legius had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Messiaen, Yao, Brems, Callens, Denayer, Greenstein, Pearn, Shapi ro, Tegay, These, Zaki, Taniguchi, Okamoto, Korf. Analysis and interpretation of data: Messiaen, Yao, Brems, Callens, Sathienkjkanchai, Denayer, Spencer, Am, Babovic-Vuskovic, Bay, Bobele, Cohen, Escobar, Eunpu, Grebe, Greenstein, Hachen, Irons, Kronn, Lemire, Lim, McDonald, Narayanan, Pearn, Pedersen, Powell, Shapiro, Skidmore, Tegay, These, Ayada, Okamoto, Yoshimura, Parret, Legius. Drafting of the manuscript: Messiaen, Yao, Brems, Callens, Denayer, Greenstein, Pearn, Shapiro, Tegay, These, Ayada, Okamoto, Yoshimura, Parret, Legius. Critical revision of the manuscript for important intellectual content: Messiaen, Brems, Sathienkjkanchai, Denayer, Spencer, Am, Babovic-Vuskovic, Bay, Bobele, Cohen, Escobar, Eunpu, Grebe, Hachen, Irons, Kronn, Lemire, Leppig, Lim, McDonald, Narayanan, Pedersen, Powell, Shapiro, Skidmore, Zaki, Vizelaar, Taniguchi, Korf, Legius. Statistical analysis: Taniguchi, Okamoto, Legius. Obtained funding: Messiaen, Yoshimura, Legius. Administrative, technical, or material support: Messiaen, Yao, Brems, Callens, Sathienkjkanchai, Spencer, Am, Bay, Escobar, Grebe, Hachen, Irons, Kronn, Lemire, Pearn, Vizelaar, Okamoto, Parret, Korf, Legius. Study supervision: Messiaen, Yoshimura, Legius.

Financial Disclosures: Mr Vizelaar is a scientist employed by MRC-Holland, provider of commercially available multiplex ligase–dependent probe amplification kits. No other disclosures were reported.

Funding/Support: This work was supported by National Institute of Child Health and Human Development U1B Intellectual and Developmental Disabilities Research Center grant HD038985 (to Drs Messiaen and Korf); the Institute for Promotion of Innovation Through Science and Technology, Flanders, Belgium (to Ms Brems); research grants from the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (G.00296.02; to Dr Legius); the Interuniversity Attraction Pole, granted by the Federal Office for Scientific, Technical and Cultural Affairs of Belgium (2007-2011); P5/25; to Dr Legius); a Concerted Action Grant from Katholieke Universiteit Leuven; special Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to Dr Yoshimura); and a Children’s Tumor Foundation Young Investigator Award (to Dr Parret). The Wilder man family provided a donation (to Dr Messiaen) to the National Institutes of Health Consensus Development Conference, Culture, Sports, Science and Technology of Japan-Aid for Scientific Research from the Ministry of Education, Culture, Science and Technology of Japan (2007-2011); P5/25; to Dr Legius); a Concerted Action Grant from Katholieke Universiteit Leuven; special Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to Dr Yoshimura); and a Children’s Tumor Foundation Young Investigator Award (to Dr Parret). The Wilderman family provided a donation (to Dr Messiaen) to help support NF1 research for children with cafe au lait spots only.

Role of the Sponsor: The sponsors of the study had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

Additional Information: The eAppendix, eTables 1 through 5, and efigures 1 through 4 are available at http://www.jama.com.

Additional Contributions: We thank the patients and their families for their support. We also thank the Wilderman family for their donation.

REFERENCES
5. Brems H, Beert E, de Ravel T, Legius E. Mecha

rism in the pathogenesis of malignant tumours in neu

17. Friedman JM. Epidemiology of neurofibromato