CD4+ T-Lymphocyte–Induced Epstein-Barr Virus Reactivation in a Patient With Severe Hypersensitivity to Mosquito Bites and Epstein-Barr Virus–Infected NK Cell Lymphocytosis

Hideo Asada, MD; Sachiko Miyagawa, MD; Yasuyuki Sumikawa, MD; Yuji Yamaguchi, MD; Satoshi Itami, MD; Setsuo Suguri, MD; Masakazu Harada, MD; Yoshiki Tokura, MD; Shigeishi Ishihara, MD; Shiro Ohshima, MD; Kunihiko Yoshikawa, MD

Background: Natural killer (NK) cell lymphocytosis associated with Epstein-Barr virus (EBV) infection often shows severe hypersensitivity to mosquito bites (HMB) characterized by intense local skin reactions and systemic symptoms such as high fever, lymphadenopathy, and hepatosplenomegaly. However, the induction mechanism of HMB is still unclear.

Observations: We investigated a typical case of HMB with EBV-positive NK cell lymphocytosis. CD4+ T cells dominantly infiltrated the site of the mosquito bite, while EBV-positive cells were few in comparison. CD4+ T cells, but not CD8+ T cells or NK cells, responded to the mosquito salivary gland extracts. Interestingly, coculturing of the NK cells and CD4+ T cells activated by mosquito extracts induced expression of EBV lytic-cycle proteins in the NK cells. Furthermore, the expression of BZLF1, a viral lytic-cycle transactivator, was detectable at the skin lesion induced by scratch patch testing with mosquito extract. The EBV DNA copy number levels in the plasma were elevated in systemic HMB symptoms compared with the normal condition.

Conclusions: CD4+ T cells are important for the primary skin reaction to mosquito bites and might play a key role in reactivation of latent EBV infection in NK cells. This viral reactivation contributed to the pathogenesis of the infectious mononucleosis-like systemic symptoms of HMB in our present case.

Arch Dermatol. 2003;139:1601-1607

HYPERSENSITIVITY to mosquito bites (HMB) is characterized by intense local skin symptoms, which consist of not only erythema or bulla but also ulceration or scarring and systemic symptoms such as high fever, lymphadenopathy, and hepatosplenomegaly.1 It was reported that natural killer (NK) cells infiltrate the skin lesions and that NK cells proliferate in the peripheral blood in a patient with HMB.2 Furthermore, Ishihara et al3 demonstrated clonal lymphoproliferation of EBV DNA–positive NK cells in patients with HMB and suggested that HMB is not an allergic disease but an EBV-associated lymphoproliferative disease. However, the mechanism of HMB is still poorly understood. We previously demonstrated that EBV-carrying NK cells in patients with HMB overexpressed surface Fas ligand (FasL) or soluble FasL and suggested that the enhanced FasL might be related to organ (or tissue) damage, such as intense skin lesions at mosquito bite sites and liver dysfunction.4,5 However, the relationship between EBV and HMB remains unclear. Herein, we propose a possible mechanism explaining the relation between HMB and EBV-positive NK cell lymphocytosis. We found that CD4+ T cells from a patient with HMB markedly responded to certain mosquito salivary gland extracts and showed that these CD4+ T cells could induce reactivation of latent EBV infection in NK cells that may be involved in the pathogenesis of HMB.

METHODS

PATIENT

The following study was performed with both the informed consent of the patient and the approval of the responsible committee in our hospital. The clinical features and laboratory data of the patient have been previously reported.6 Briefly, an 18-year-old woman had recurrent necrotizing papules on the face and oral mucosa for 8 years. Since she was 13 years old, she has also had intense skin reactions at mosquito bite sites. The skin reaction usually began with erythema and swelling at 12 to 24 hours after the mosquito bite and developed to bulla, hemorrhagic necrosis, and ulcer formation (Figure 1). In addition to these local
cutaneous manifestations, she also had systemic symptoms such as high fever, lymphadenopathy, hepatosplenomegaly, and general malaise. Hematologically, the typical cell morphology of large granular lymphocytes with azurophilic granules in an abundant cytoplasm was observed in approximately half of the mononuclear cells in a smear of the patient’s peripheral blood. Flow cytometric analysis of lymphocytes showed a marked increase (51.1%) in the CD56+,CD16+,CD3− populations, which was suggested to be NK cells. The pattern of serum antibody titers against EBV was compatible with chronic active EBV infection suggested to be NK cells. The presence of EBV in the infiltrating cells at the mosquito bite site. Sections were incubated in 0.3% hydrogen peroxide for 10 minutes to inactivate endogenous peroxidase. The slides were incubated with the primary MoAbs for 18 hours at 4°C. Binding of the primary MoAbs was demonstrated using the LSAB2 Kit (DAKO).

IN SITU HYBRIDIZATION

The presence of EBV in the infiltrating cells at the mosquito bite site was assessed by in situ hybridization for EBER1. Hybridization was carried out as previously described. Briefly, deparaffinized tissue sections of the bite site were treated with 10 µg/mL of proteinase K (Boehringer Mannheim GmbH Biochemica, Mannheim, Germany) for 30 minutes at 37°C, fixed with 4% paraformaldehyde in 0.1M PBS, pH 7.0, and embedded in paraffin; serial sections were prepared. Samples for immunostaining were embedded in Tissue-Tek OCT compound (Sakura Finetek, Tokyo, Japan) and then deep frozen in liquid nitrogen and stored at −80°C prior to sectioning.

IMMUNOSTAINING FOR LYMPHOCYTE SURFACE MARKERS

Monoclonal antibodies (MoAbs) against CD4 (Novocastra Laboratories, Newcastle, England), CD8 (DAKO, Kyoto, Japan), and CD16 (Novocastra Laboratories) were used for immunostaining. Immunohistochemical examination for lymphocyte surface markers was carried out on frozen sections of the skin lesion at the mosquito bite site. Sections were incubated in 0.3% hydrogen peroxide for 10 minutes to inactivate endogenous peroxidase. The slides were incubated with the primary MoAbs for 18 hours at 4°C. Binding of the primary MoAbs was demonstrated using the LSAB2 Kit (DAKO).

RT-PCR ANALYSIS

Skin biopsy was performed at the skin lesion induced for 48 hours by scratch patch test with A albopictus salivary gland extract. Total RNA was isolated from the skin biopsy samples by the acid guanidinium thiocyanate-phenol-chloroform method. Samples of RNA were pretreated with 10 µL of deoxyribonuclease for 15 minutes at 37°C followed by denaturing of the enzyme for 5 minutes at 99°C to avoid amplification of DNA con-
tamination. One microgram of total RNA of each sample was reverse transcribed using M-MLV RT (Gibco-BRL, Gaithersburg, Md) and random hexamer primers. The resultant complementary DNA was amplified by the PCR using recombinant Taq DNA polymerase (Takara Shuzo Co, Shiga, Japan) and 0.5 μmol/L of each of the forward and reverse primers. To detect expression of BZLF1 messenger RNA, nested sets of primers were synthesized and used for amplification as described by Prang et al. B95-8 cells were used as a positive control for detection of EBV lytic-cycle gene expression. As a negative control, we used the tissue samples from nonspecific dermatitis lesion of the patient. For quality control of RNA samples, we used histone 3.3 RT-PCR according to the method of Futscher et al.

PURIFICATION OF CD4+ T, CD8+ T, AND NK CELLS

Whole blood was collected from the patient and healthy volunteers. Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Hypaque (Pharmacia Biotech, Uppsala, Sweden) gradient centrifugation. CD4+ T, CD8+ T, and NK cells were purified by magnetic cell sorting using StemStep-TM Kit (Stem Cell Technologies Inc, Vancouver, British Columbia) as described elsewhere. StemStep-TM is a negative selection system in which the unwanted cells are immunomagnetically labeled and bound to a magnetic column. Purified cell phenotypes were examined by flow cytometric analysis after staining with MoAbs against VCA (Chemicon, Temecula, Calif) or EA (Chemicon) for 1 hour, washed 3 times, incubated for 30 minutes with fluorescein isothiocyanate–conjugated gout F(ab′)2 antibody fragment to mouse IgG. After washing 3 times, the cells were incubated for 1 hour with biotinylated MoAb against CD56.

IMMUNOSTAINING FOR EBV LYTIC-CYCLE PROTEINS

CD4+ T cells from the patient were exposed to 4 μg/mL of salivary gland extract of A albopictus for 3 days and cocultured with NK cells from the same patient for 3 days (CD4+ T cells–NK cell ratio = 1:10). Coculture of unexposed CD4+ T cells with NK cells was performed in parallel. The cultured cells were cyospun onto glass slides fixed in cold acetone. To detect expression of EA and VCA of EBV in the NK cells, 2-color immunofluorescence analysis was performed. The fixed cells were incubated with MoAbs against VCA (Chemikon, Temecula, Calif) or EA (Chemikon) for 1 hour, washed 3 times, incubated for 30 minutes with fluorescein isothiocyanate–conjugated gout F(ab′)2 antibody fragment to mouse IgG. After washing 3 times, the cells were incubated for 1 hour with biotinylated MoAb against CD56.

Proliferation assay

RPMI-1640 medium supplemented with penicillin-streptomycin mixture, 5×10−5 M 2-mercaptoethanol, 2mM glutamine, 10mM HEPES, and 10% heat-inactivated fetal bovine serum were used as the culture medium. CD4+ T, CD8+ T, and NK cells were purified from the mononuclear cells of the patient and 5 healthy volunteers, and autologous PBMCs were x-ray irradiated (3000 rad [30 Gy]) and used as antigen-presenting cells. CD4+ T, CD8+ T, and NK cells (5×10^6 cells/mL) were mixed with antigen-presenting cells (5×10^6 cells/mL), and cultured with 4 μg/mL of extracts from mosquito salivary glands in 96-well U-bottom plates. After a 4-day incubation period with salivary extracts, cultures were pulsed with 18.5 kBq [3H]-thymidine (Amersham, Aylesbury, England) per 10^4 cells. Cultures were harvested 4 hours later onto glass fiber filter paper using a semiautomatic cell harvester. Radioactivity was measured with liquid scintillation. These assays were performed 3 times for each sample.

Detection of EBV and analysis of surface phenotype

The biopsy specimens were taken from the skin lesions at the mosquito bite sites. We performed in situ hybridization to detect EBV infection and immunohistochemistry to study the surface phenotype of infiltrating lym-
phocytes. In situ hybridization with EBER1 probe demonstrated that approximately 5% of infiltrating cells were positive for Epstein-Barr virus in the same lesion as panel A (original magnification ×100.)

Figure 3. A, Hematoxylin-eosin staining of a skin lesion at mosquito bite site demonstrated dense infiltration of lymphoid cells in the dermis. B, In situ hybridization with EBER1 probe demonstrated that about 5% of infiltrating cells were positive for Epstein-Barr virus in the same lesion as panel A (original magnification ×100.)

PBMCs from the healthy volunteers showed no or low proliferative responses. Then, CD4+ T, CD8+ T, and NK cells purified from peripheral blood of the patient were stimulated with the salivary gland extracts. CD4+ T cells, but neither NK cells nor CD8+ T cells, markedly reacted to the extracts (Figure 5A).

RESPONSES OF CD4+ T CELLS TO SALIVARY GLAND EXTRACTS

CD4+ T cells of the patient and a healthy volunteer were stimulated with each of salivary gland extracts from A albopictus, A sinensis, A stephensi, C p pallens, and C triaeniorhynchus (4 µg/mL). Marked proliferation was found in response to salivary gland extract of A albopictus, while moderate responses to C p pallens and C triaeniorhynchus and low responses to A sinensis and A stephensi were observed (Figure 5B).

EXPRESSION OF EBV LYTIC-CYCLE PROTEINS IN NK CELLS

Natural killer cells from the patient were cocultured for 72 hours with autologous CD4+ T cells stimulated or non-stimulated by the salivary gland extract of A albopictus. The cells were double-stained with anti-CD56 MoAb and MoAbs to lytic-phase EBV proteins (VCA and EA). We obtained cytoplasmic staining for VCA (Figure 6) and EA (data not shown) proteins in 1% to 3% of CD56+ cells cocultured with mosquito antigen-stimulated CD4+ T cells. In contrast, no VCA or EA signal could be detected in either CD56+ cell culture with nonstimulated CD4+ T cells or CD56+ cell culture with mosquito salivary gland extract without CD4+ T cells.

EBV LYTIC-CYCLE GENE EXPRESSION IN THE SKIN LESION

Skin biopsy was performed from the skin lesion induced by scratch patch testing with salivary gland extract of A albopictus. Reverse transcriptase–PCR analysis demonstrated the expression of a viral lytic-cycle transactivator BZLF1 gene at the skin lesion induced by mosquito extract but not at the nonspecific dermatitis lesion (Figure 7).

PLASMA LEVELS OF EBV DNA AT DIFFERENT TIME POINTS

With use of real-time quantitative PCR, we evaluated EBV genome concentrations in the plasma samples of the patient at different time points, at times either with or without systemic HMB symptoms. Plasma EBV DNA levels increased in systemic HMB symptoms compared with healthy conditions without systemic HMB symptoms (Table).

COMMENT

There were at least 3 characteristic features in our present case. The first was marked increase of NK cells, which were morphologically large granular lymphocytes that ex-
pressed CD16 and CD56, but not CD3, CD4, or CD8.

Second, the expanding NK cells were infected with EBV. In situ hybridization with EBER1, PCR analysis of EBV DNA, and RT-PCR analysis of EBV messenger RNA revealed that the NK cells were latently infected with EBV. Moreover, Southern blot analysis using EBV-terminal repeat probe demonstrated that EBV DNA–positive cells oligoclonally proliferated. Third, the patient had repeated episodes of HMB with erythematous swelling and skin ulcer at the mosquito bite site associated with high fever, lymphadenopathy, and hepatosplenomegaly. Scratch patch testing with mosquito extracts also induced similar skin reactions. Approximately 50 cases of HMB have been reported in Japan,1-5,11 and several reports of such cases are observed in Korea, Taiwan,12,13 and
Next, to investigate the interaction of CD4+ T cells stimulated by mosquito extract with EBV-carrying NK cells, we cocultured these cells in vitro and monitored the expression of EBV antigens. After coculture for 3 days, we detected EBV lytic-cycle antigen expression in the NK cells. In contrast, no lytic-cycle proteins were detected in the coculture of NK cells and nonstimulated CD4+ T cells. These phenomena suggest that CD4+ T cells, activated by exposure to mosquito extract, might play an important role in reactivation of latent EBV infection in NK cells. Furthermore, to investigate whether such phenomena in vitro also occurred in vivo, we assessed the expression of a viral lytic-cycle transactivator BZLF1 messenger RNA in the skin lesion induced by scratch patch testing with mosquito salivary gland extract. As a result of the scratch patch testing, the expression of BZLF1 gene was observed in the skin lesion. Moreover, EBV genome copy number in the plasma also increased in HMB conditions compared with normal conditions. Indeed, the patients with HMB generally have high titers of serum antibody to EBV lytic-cycle proteins such as anti-VCA and EA, which suggests that viral reactivation occasionally occurred in these patients. A recent article demonstrated that EBV-specific CD4+ T cells play an important role in reactivation of latent EBV infection in resting B cells through a CD40-dependent pathway. In the present case of EBV-carrying NK cell lymphocytosis, mosquito antigen-specific CD4+ T cells, rather than EBV-specific CD4+ T cells, seem to be involved in EBV reactivation, although the mechanism by which mosquito antigen-specific CD4+ T cells induce EBV reactivation in NK cells is not clear. Our preliminary experiment demonstrated that the supernatant of CD4+ T cells stimulated by mosquito extract also induced EBV reactivation in NK cells, which suggests that mosquito antigen-exposed CD4+ T cells could secrete soluble factors inducing EBV reactivation in NK cells. Understanding the exact mechanisms involved in EBV reactivation in NK cells will require additional study.

As a result of EBV reactivation in vivo, NK cells expressing EBV lytic-cycle antigens, cell-free EBV, or EBV-infected B cells may induce strong immune reactions and lead the patient to infectious mononucleosis-like systemic symptoms of HMB such as high fever, lymphadenopathy, and hepatosplenomegaly. Recent studies demonstrated that EBV infection to B cells induced the expression of host-encoded superantigens, which elicit potent, antigen-independent T-cell responses, and suggest that the T-cell activation by the superantigens could play a central role in EBV infection. Taken together, we propose a possible process of HMB in our patient as summarized in Figure 8, that is, mosquito antigen-specific CD4+ T cells are an important part in the primary skin reaction to mosquito bite and may play a key role in reactivation of latent EBV infection in NK cells, and this viral reactivation contributes to the pathogenesis of the infectious mononucleosis-like systemic symptoms of HMB in our patient.

In addition to HMB, other cutaneous manifestations have been reported in the patients with EBV-infected NK or T-cell proliferative disorders. Especially, there have been several reports of patients with...
severe hydroa vacciniforme-like eruption,16,21,22 characterized by recurrent necrotic papulovesicles in light-exposed and nonexposed areas. The patient in the present article also has shown hydroa vacciniforme-like eruption since she was 10 years old. This type of skin lesion was unrelated to mosquito bites. The difference of pathologic mechanism between HMB and hydroa vacciniforme-like eruption should be clarified by further studies.

Accepted for publication March 19, 2003.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Culture, Sports, and Technology, Tokyo, Japan.

We thank Yumi Ando, MD, and Shun Kitaba, MD, for their valuable assistance and Takeshi Sairenji, PhD, for his helpful comments.

Corresponding author and reprints: Hideo Asada, MD, Department of Dermatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan (e-mail: asadah@naramed-u.ac.jp).

REFERENCES