Treatment of Cutaneous Leishmaniasis
With Photodynamic Therapy

Claes D. Enk, MD, PhD; Clemens Fritsch, MD; Flory Jonas, BSc; Abedelmajeed Nasereddin, MPH; Arieh Ingber, MD; Charles L. Jaffe, PhD; Thomas Ruzicka, MD, PhD; Hadassah-Germany Skin Center, Hadassah Medical Organization—Hebrew University Medical School (Drs Enk and Ingber and Ms Jonas), and Hebrew University—Hadassah Medical School (Drs Nasereddin and Jaffe), Jerusalem, Israel, and Heinrich Heine University, Dusseldorf, Germany (Drs Fritsch and Ruzicka)

Old World cutaneous leishmaniasis,1 which is found in widely scattered parts of Asia, Africa, and Europe, is the result of leishmanial infection of dermal macrophages. Leishmania major is the most common cause of cutaneous leishmaniasis in the Middle East. The cutaneous lesions occur at the site of the Phlebotomus sandfly bite and within a few months develop from small erythematous papules to larger dusky granulomatous lesions, often with ulcerated centers and raised indurated borders. The lesions may heal spontaneously over months to years, often leaving disfiguring, slightly depressed scars.

REPORT OF CASES

Eleven consecutive Israeli patients with a total of 32 lesions of cutaneous leishmaniasis were included in the study. The clinical diagnosis was verified by demonstration of amastigotes in direct smears from the lesions. Leishmania species characterization was carried out by polymerase chain reaction on the stained slides of the direct smears, using primers for the internal transcribed spacer region of the recombinant RNA genes, followed by restriction enzyme digestion with HaeIII.2 The results were positive for Leishmania in all patients, and restriction digestion of the polymerase chain reaction products gave a pattern typical of L major.

THERAPEUTIC CHALLENGE

Treatment of cutaneous leishmaniasis is directed toward eradication of amastigotes and reduction of the size of the lesions to promote healing with minimal scarring. Therapeutic modalities include systemic treatments such as the use of the pentavalent antimony compounds sodium stibogluconate (Pentostam) and meglumine antimonite (Glucantine), lipid formulations of intravenous amphotericin B, oral ketoconazole oritraconazole, topical paromomycin sulfate, local heat, or freezing with liquid nitrogen.3,4 However, none of these modalities has proved satisfactory, and a few of the touted agents have been assessed adequately in clinical trials.

The pentavalent antimony compounds have been in use for more than 50 years, and development of resistance is of increasing concern; they require weeks of intravenous administration and are frequently associated with malaise, anorexia, myalgia and arthralgia, electrocardiographic abnormalities, elevated aminotransferase levels, and chemical pancreatitis. The topical treatments often require multiple repetitions, display modest activity, and are nearly always associated with considerable discomfort because of pain or severe skin irritation.

SOLUTION

Faced with this therapeutic challenge, we tested the effectiveness of photodynamic therapy (PDT) in the treatment of cutaneous leishmaniasis in terms of the number of treatments necessary to obtain eradication of amastigotes from the lesions, reduction of lesion size, cosmetic results, and adverse effects. Ten percent δ-aminolevulinic acid (ALA) in a water-in-oil emulsion was applied locally under occlusion for 4 hours, after which ALA selectively accumulated in the leishmaniasis lesions as demonstrated by fluorescence of ALA-induced porphyrins after exposure to Wood light (Figure, A and B). Irradiation was performed using broadband (570-670 nm) red light (CureLight Broadband; PhotoCure ASA, Oslo, Norway), delivering 100 J/cm² per treatment session at a light intensity of 150 mW/cm². Treatments were repeated at weekly intervals until amastigotes were no longer detectable in direct smears from the lesions. Three to 6 months after the last treatment, the patients were reexamined by means of direct smears and clinical evaluation of the lesions.

All lesions but one were amastigote negative, with a median reduction of 67% in size (P <.005, Wilcoxon signed rank test) after 1 or 2 PDT treatments (Table), and all lesions flattened considerably. Healing was excellent, and most lesions left only superficial scarring or slight postinflammatory hyperpigmentation (Figure, C and D). There was no recurrence of amastigotes during the observation period. Except for a transient burn-
ing sensation in some of the patients, the treatment was
without adverse effects and was well tolerated. The single
nonresponsive lesion (patient 5) was ulcerated and did
not accumulate ALA at the necrotic center. Although
the lesion exhibited considerable reduction in size, the
direct smears did not become amastigote negative, and
the patient was unavailable for follow-up after the third
treatment.

COMMENT

We report on the effectiveness of PDT in the treatment
of cutaneous leishmaniasis caused by *L. major* in terms
of (1) the number of treatments necessary to obtain eradi-
cation of amastigotes from the lesions, (2) lesion size,
(3) cosmetic results, and (4) adverse effects. Healing of
the cutaneous leishmaniasis lesion involves eradication
of lesional amastigotes; tissue remodeling, including flatt-
ening of the lesional borders and filling of the ulcerated
center; reepithelialization; and reduction of tissue inf-
flammation and postinflammatory hyperpigmentation.
Parameters of wound healing include the area and depth
of the wound, total time to heal, and rate of healing. These
parameters are often difficult to evaluate objectively;
therefore, we chose the eradication of amastigotes as our
main biological end point for determining the duration
of treatment.

Photodynamic therapy involves the administration
of a photosensitizing compound and the selective accu-
mulation of the sensitizer molecule in the target lesion,
followed by irradiation of the lesion with visible light.
In dermatologic settings, topical formulations of ALA are
the most commonly used photosensitizers. Exogenous
administration of ALA bypasses the rate-limiting en-
zyme of heme synthesis, ALA synthase, and leads to en-
dogenous buildup of the highly potent photosensitizer
protoporphyrin IX. The mechanism of preferential in-
tralesional uptake of precursors and photosensitizers is
not fully understood. Interaction of the photosensitiz-
ing compound with light of an appropriate wavelength
causes destruction of tissue by generation of reactive oxy-
gen species and consequent peroxidation of lipids and
crosslinking of proteins, which lead to severe interfer-
ence with normal cellular functions.

Dermatologic applications of PDT with ALA (ALA-
PDT) include cutaneous precancers and malignant neo-
plasms such as actinic keratoses, basal cell carcinomas,
Bowen disease, squamous cell carcinomas, Kaposi sar-
comas, and mycosis fungoides. Recently, interest has
centered around the antimicrobial activities of PDT. *Pro-
pionibacterium acnes* produces porphyrins that absorb light
in the near-UV- and blue-light spectrum, and exog-
igenous ALA that accumulates in the pilosebaceous units
has been used successfully in the treatment of acne vul-
garis. Antiviral activity of ALA-PDT against human
papillomavirus was recently demonstrated in a random-
ized double-blind trial of ALA-PDT for the treatment of
recalcitrant foot and hand warts, and photoactivation
of toluidine blue has been shown to cause intracellular

Effect of Photodynamic Therapy on *Leishmania major* Amastigotes and Lesion Size in Patients With Cutaneous Leishmaniasis

<table>
<thead>
<tr>
<th>Patient No./ Sex/Age, y</th>
<th>No. of Lesions</th>
<th>Duration of Disease, mo</th>
<th>No. of Treatments</th>
<th>Lesion Size, mm²</th>
<th>Reduction of Lesion Size, † %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/M/48</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>962</td>
<td>85</td>
</tr>
<tr>
<td>2/M/20</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1134</td>
<td>87</td>
</tr>
<tr>
<td>3/F/19</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1520</td>
<td>63</td>
</tr>
<tr>
<td>4/M/19</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>95</td>
<td>77</td>
</tr>
<tr>
<td>5/M/53</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>962</td>
<td>49</td>
</tr>
<tr>
<td>6/M/22</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>314</td>
<td>73</td>
</tr>
<tr>
<td>7/M/21</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1018</td>
<td>44</td>
</tr>
<tr>
<td>8/M/21</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>314</td>
<td>70</td>
</tr>
<tr>
<td>9/M/22</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>254</td>
<td>32</td>
</tr>
<tr>
<td>10/M/23</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>706</td>
<td>33</td>
</tr>
<tr>
<td>11/M/20</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>1257</td>
<td>41</td>
</tr>
</tbody>
</table>

*Size of largest lesion. †Median reduction of lesions measured 1 week after last treatment.
damage in yeast cells. The use of porphyrins in combination with the quinonoid compound menadione causes selective destruction of intracellular Leishmania parasites in vitro, a process that can be explained by autooxidation, which causes the production of superoxide anion radicals and hydrogen peroxide, which, in turn, may mediate cellular damage by lipid peroxidation and inactivation of parasite enzymes.

Certain Leishmania species, such as Leishmania donovani, which lack catalase and glutathione peroxidase activity, are particularly susceptible to oxidative damage. The present report represents the first clinical demonstration of photodynamic action on cutaneous parasitic infections. Photodynamic therapy is an attractive antiparasitic therapeutic modality that offers rapid localized destruction of the diseased lesion without affecting adjacent normal tissue. Furthermore, development of resistance appears unlikely, because selective microbial destruction is mediated by oxidative damage. Although Old World cutaneous leishmaniasis is a potentially self-healing disorder, the rapid eradication of amastigotes and the significant reduction of lesion size only 1 week after treatment are indicative of the effectiveness of PDT. However, the ultimate place of PDT among the various treatment modalities of cutaneous leishmaniasis should be tested in a controlled randomized trial.

Accepted for publication March 17, 2002.

Corresponding author and reprints: Claes D. Enk, MD, PhD, Department of Dermatology, Hadassah-Hebrew University Medical School, PO Box 12000, Jerusalem 91010, Israel (e-mail: enk@hadassah.org.il).

REFERENCES