Cutaneous Melanoma and Other Skin Cancer Screening Among Hispanics in the United States: A Review of the Evidence, Disparities, and Need for Expanding the Intervention and Research Agendas

Skin pigmentation and sun sensitivity vary widely among US Hispanics, whose median number of nevi (the strongest melanoma risk factor) is somewhat lower than in whites yet higher than in Asians or blacks. The correlation between number of nevi and age is stronger in Hispanics and non-Hispanic whites than in other ethnoracial groups. Among Hispanics, acculturation to the United States might lead to decreased sun safety practices. Nationwide data from 1992 through 2007 reveal that melanoma incidence among Hispanics increased by more than 22%. Hispanics display higher rates of thick melanoma at diagnosis, and in the absence of cure, targeted prevention might be the best strategy for countering the epidemic. Hence, our objective was to synthesize the evidence about skin cancer screening among US Hispanics.

See Practice Gaps at end of letter

Methods. We identified observational population-based US studies on melanoma or other skin cancer screening that evaluated participants of Hispanic descent, without any age, time, or language restrictions. Hispanic or Latino ethnicity was defined as Mexican, Puerto Rican, Cuban, or Central or South American heritage regardless of race. Screening techniques included skin self-examination (SSE), clinical skin examination (CSE), dermoscopy, and biopsy. We conducted an extensive literature search through October 2010 using MEDLINE (from 1950), EMBASE (from 1974), CancerLit (from 1963), and Lilacs (from 1982) and reviewed the bibliographies of all relevant articles. The following keywords and indexing terms were used: melanoma, skin neoplasms, self-examination, early detection of cancer, and mass screening. From the 1029 retrieved articles, we excluded duplicates, reviews, non-US studies, and those with patient or survivor samples, selecting 138 articles for detailed review. Studies with missing ethnoracial data were excluded. Nine studies met all inclusion criteria, and from each we extracted the age range, population type, health care access status, setting, number and/or percentage of Hispanics with reported melanoma or other skin cancer screening, year of assessment and measurement method.

Results. The reviewed articles8-10 are summarized in the Table. Heterogeneity was observed in sample size and composition, SSE and CSE definitions, and screening reference periods. An estimate of the relative odds ratio for CSE by ethnicity was available in only 1 study, indicating that Hispanics were almost 40% less likely to report a recent CSE than non-Hispanic whites. Overall, SSE was reported by 14% to 50% of Hispanics, while CSE was reported by 7% to 17%. Only 1 study showed screening rates by sex, with 18.2% of Hispanic women and 8.3% of Hispanic men reporting SSE within the past 2 months. Research with nationally representative samples documented a decreasing trend in CSE prevalence, possibly attributable to measurement modification in the most recent assessment. Specifically, 5.6%, 5.7%, and 3.7% of Hispanics reported a recent CSE in 1992, 1998, and 2000, respectively (the corresponding percentages among whites were 11.4%, 12.5%, and 8.9%). No studies on dermoscopy or skin biopsies by Hispanic ethnicity were found; also none pertained to melanoma screening among children or adolescents. All 9 studies relied on self-reports, and none documented CSE validation. The paucity of research along with considerable heterogeneity in sample characteristics and screening measures prevented subgroup analyses or meta-analyses.

Comment. The US Hispanic population is rarely the focus of melanoma screening research despite sufficient epidemiologic evidence that this population merits increased attention. Our review suggests that Hispanics’ high rate of advanced melanoma could be attributed to insufficient prevention initiatives, lack of SSE instruction or awareness about signs or symptoms, delay in seeking follow-up care for suspect lesions, and decreased risk awareness among individuals and physicians. Our review further suggests that health care access might not be the strongest enabling factor in melanoma screening of Hispanics.

A limitation of this review was the inability to make skin color or skin sensitivity distinctions among Hispanics because such data were not provided in the studies. One of the reviewed studies noted that Hispanics were less likely than non-Hispanic whites to report oral cancer screening, whereas another study observed a significant link between CSE and breast, colorectal, or prostate cancer screening. Recent research highlights the lack of relevance of skin cancer to Hispanics, whose knowledge about the disease is not derived primarily from physicians but rather from the media, which has also been identified as a reason for SSE. However, applicability of the ABCDE rule for Hispanics remains to be clarified. Research notes that physicians’ experience with non-Hispanic whites and melanoma diagnosis patterns might not be relevant to Hispanics. The extremely high costs for thick melanoma management further
warrant an increased emphasis on developing early detection strategies.18

The Hispanic population growth rate is over 3 times higher than that of the total US population,19 which has strong implications for health care providers, policy, and research. Potential similarities in important melanoma risk factors such as skin or nevi characteristics between Hispanics and non-Hispanic whites, the high rates of thick melanoma among Hispanics, and the suboptimal prevention efforts with

<table>
<thead>
<tr>
<th>Source</th>
<th>Population</th>
<th>Hispanics, No.</th>
<th>Full Sample With Health Care Access</th>
<th>Survey Year</th>
<th>SSE, %</th>
<th>CSE, %</th>
<th>Screening Reference Period</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friedman et al.13 1994</td>
<td>Worksite skin cancer screening participants; men and women; mean age, 41 y; Texas</td>
<td>36</td>
<td>Yes</td>
<td>1992</td>
<td>NRa</td>
<td>NA</td>
<td>Within past year</td>
<td>Frequency of SSE</td>
</tr>
<tr>
<td>Robinson et al.14 1998</td>
<td>National probability sample; men and women; ages (\geq) 18 y</td>
<td>120b</td>
<td>NA</td>
<td>1996</td>
<td>35.0</td>
<td>NA</td>
<td>Within past year</td>
<td>“In the past year, have you closely examined yourself for signs of melanoma or skin cancer?” (yes/no)</td>
</tr>
<tr>
<td>Pipitone et al.15 2002</td>
<td>Worksite health promotion participants; men and women; ages 18-69 y; Illinois</td>
<td>27</td>
<td>Yes</td>
<td>1999</td>
<td>15.0</td>
<td>NA</td>
<td>Within past year</td>
<td>Frequency of SSE</td>
</tr>
<tr>
<td>Canto et al.16 2003</td>
<td>NHIS; ages (\geq) 40 y</td>
<td>NA</td>
<td>NA</td>
<td>1998</td>
<td>7.0</td>
<td>NA</td>
<td>Within past year and/or ever</td>
<td>“Have you ever had your skin checked for cancer either by a dermatologist or some other kind of doctor?” and “When did you have your most recent skin exam?”</td>
</tr>
<tr>
<td>Saraiya et al.a 2004</td>
<td>NHIS; ages (\geq) 18 y</td>
<td>930</td>
<td>NA</td>
<td>1992</td>
<td>11.7c</td>
<td>NA</td>
<td>Ever and/or recentd</td>
<td>“Have you ever had all of your skin from head to toe checked for cancer either by a dermatologist or some other kind of doctor?” If yes, date of most recent skin examination</td>
</tr>
<tr>
<td></td>
<td>NHIS; ages (\geq) 18 y</td>
<td>3783</td>
<td>NA</td>
<td>1998</td>
<td>11.0c</td>
<td>NA</td>
<td>Ever and/or recentd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NHIS; ages (\geq) 18 y</td>
<td>3668</td>
<td>NA</td>
<td>2000</td>
<td>7.1a, e</td>
<td>NA</td>
<td>Ever and/or recentd</td>
<td></td>
</tr>
<tr>
<td>Arnold and DeJong17 2005</td>
<td>Convenience sample of university students; men and women; ages 18-30 y; Massachusetts</td>
<td>7</td>
<td>Yes</td>
<td>NA</td>
<td>14.3</td>
<td>NA</td>
<td>Ever</td>
<td>“Have you ever closely examined your skin for signs of skin cancer or melanoma?” “If yes, which areas did you examine?”</td>
</tr>
<tr>
<td>Federman et al.18 2006</td>
<td>Female veterans; ages (\geq) 40 y; Connecticut</td>
<td>10</td>
<td>Yes</td>
<td>2004</td>
<td>50.0</td>
<td>10.0</td>
<td>Within past 1-2 y</td>
<td>Performance of CSE on entire skin by primary care physician after patient is completely unclothed annually or every other year; SSE (yes/no)</td>
</tr>
<tr>
<td>Rodriguez et al.19 2007</td>
<td>Outpatients; men and women; ages (\geq) 18 y; Florida</td>
<td>148</td>
<td>Yes</td>
<td>2006</td>
<td>17.0</td>
<td>NA</td>
<td>Within past 1-2 y</td>
<td>Performance of CSE on entire skin by primary care physician after patient is completely unclothed annually or every other year; SSE (yes/no)</td>
</tr>
<tr>
<td>Risica et al.10 2008</td>
<td>Outpatients; men and women; ages (\geq) 18 y; Rhode Island</td>
<td>23</td>
<td>Yes</td>
<td>2000-2001</td>
<td>13.0</td>
<td>NA</td>
<td>Within past 2 mo</td>
<td>Examination of 7 specified body areas</td>
</tr>
</tbody>
</table>

Abbreviations: CSE, clinical skin examination; NA, not applicable; NHIS, National Health Interview Survey; NR, exact figure not reported; SSE, skin self-examination.

a Hispanics less likely than non-Hispanic whites to perform SSE (\(P=.01\)).

b Number might include some individuals from other ethnic groups.

c Weighted and age-adjusted percentages.

d “Recent” CSE for ages 18 to 39 years means within the previous 3 years; “recent” CSE for ages \(\geq\) 40 years means within the previous year.

e Odds ratio 0.61 (95% confidence interval, 0.45-0.82).
Hispanics strongly reinforce the need for increased public health focus to correct misconceptions about skin cancer, improve the frequency and efficacy of SSE, and reduce existing disparities.

Valentina A. Andreeva, PhD
Myles G. Cockburn, PhD

Author Affiliations: Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (Drs Andreeva and Cockburn); UREN, University of Paris XIII, Bobigny, France (Dr Andreeva).

Correspondence: Dr Andreeva, PhD, Nutritional Epidemiology Research Unit, (UREN), University of Paris XIII, 74, rue Marcel Cachin, Bobigny 93017, France (v.andreeva@uren.smbh.univ-paris13.fr).

Author Contributions: Dr Andreeva had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Andreeva and Cockburn. Acquisition of data: Andreeva. Analysis and interpretation of data: Andreeva and Cockburn. Drafting of the manuscript: Andreeva. Critical revision of the manuscript for important intellectual content: Cockburn. Study supervision: Cockburn. Data abstraction: Andreeva.

Financial Disclosure: None reported.

Funding/Sponsor: This work was supported in part by Centers for Disease Control and Prevention grant 36 U55/CCU921930-02, National Institute of Environmental Health Sciences grant 5P30 ES07048, and National Cancer Institute grant R01 CA121052 (Dr Cockburn) and by a doctoral dissertation fellowship from the Department of Preventive Medicine, Keck School of Medicine, University of Southern California (Dr Andreeva).

Role of the Sponsors: The sponsors had no role in the design or conduct of the study; in the collection, analysis, or interpretation of data; or in the preparation, review, or approval of the manuscript.

PRACTICE GAPS

Suboptimal Skin Cancer Screening and Delayed Melanoma Diagnosis in Hispanics

Melanoma among Hispanics is becoming an increasingly critical public health issue as the US Hispanic population rapidly expands, and the incidence of melanoma among Hispanics steadily increases. Mounting evidence suggests that both prevention and diagnosis of melanoma need to be improved in the Hispanic community. Andreeva et al highlight 2 important screening deficiencies: (1) the rates of skin self-examinations and clinical examinations are low among Hispanics, and (2) there is limited research on skin cancer screening efforts among Hispanics. Suboptimal screening likely contributes to the disparate melanoma outcome among Hispanics who have a substantially higher proportion of melanomas diagnosed at a later stage than non-Hispanic whites.1

While socioeconomic factors impede access to care, lower knowledge and awareness of melanoma risks among Hispanics likely delay access as well.2 During clinic visits, additional barriers to appropriate melanoma screening may include providers’ lack of awareness of melanoma risk in Hispanics and failure to inquire about risk factors such as family history, sun-exposure history, and changing or bleeding moles. Lack of consensus on effective early detection strategies for Hispanic patients poses another challenge, as do differences in language and cultural and/or social values that may exist between the provider and the patient.

These challenges represent opportunities for intervention, several of which can be easily implemented by dermatologists. First we need to educate ourselves and our colleagues on melanoma risk in Hispanics and dispel the public misconception that melanoma only occurs in whites. Since 1 of every 4 Americans will be Hispanic by 2020 according to the Census Bureau, heightened awareness of melanoma disparity among Hispanics is essential.