The Significance of Eccentric and Central Hyperpigmentation, Multifocal Hyper/hypopigmentation, and the Multicomponent Pattern in Melanocytic Lesions Lacking Specific Dermoscopic Features of Melanoma

Alda Arevalo, MD; Davide Altamura, MD; Michelle Avramidis, BSc; Andreas Blum, MD; Scott Menzies, MBBS, PhD

Objective: To examine the significance of eccentric hyperpigmentation (EH), central hyperpigmentation (CH), multifocal hyper/hypopigmentation (MH/HP), and the multicomponent pattern (MCP) in melanocytic lesions lacking specific dermoscopic features of melanoma.

Design: A total of 3367 benign and malignant melanocytic lesions (n=341 melanomas, excluding lentigo maligna and lentigo maligna melanoma) were examined to identify those lesions lacking specific dermoscopic features of melanoma but having any of the global patterns of EH, CH, MH/HP, and MCP.

Setting: Dermoscopic images were collected from lesions excised or undergoing sequential digital monitoring from the Sydney Melanoma Diagnostic Centre, a tertiary referral institution located in Sydney, Australia.

Main Outcome Measure: The odds ratio (OR) for melanoma of EH, CH, MH/HP, and MCP.

Results: While EH (OR, 3.3; 95% confidence interval [CI], 2.5-4.6) and MCP (OR, 15.4; 95% CI, 11.9-19.9) were significant predictors of melanoma when total melanomas vs nevi were analyzed, there was no significant difference between the frequency of any of the global patterns in melanomas vs benign nevi lacking specific dermoscopic features of melanoma.

Conclusion: Based on our study results and previous prevalence data on these global patterns in benign nevi, we do not believe that lesions with EH or MCP require closer observation than other benign nevi lacking specific dermoscopic features of melanoma.

Arch Dermatol. 2008;144(11):1440-1444

TYPICAL (CLARK, DYSPLASTIC) and banal acquired nevi have previously been classified according to global structural features found on dermoscopy.1,2 Such features include reticular, globular, or homogeneous patterns with combinations of those types: eccentric hyperpigmentation (EH), central hyperpigmentation (CH), and multifocal hyper/hypopigmentation (MH/HP). In a follow-up study of both benign and malignant melanocytic lesions by Blum et al,3 certain global patterns were found more frequently in melanoma. In particular, the multicomponent pattern (MCP) with all 3 reticular, globular, and homogeneous structures had an odds ratio (OR) of 12.5 for melanoma, 2.9 for EH, and 2.2 for MH/HP. Such observations have been recently reproduced by others.4

Because of these observations, EH, MH/HP, and MCP have been considered indications for close monitoring or excision of nevi. However, to date, no study (to our knowledge) has examined these patterns in melanocytic lesions that have none of the more specific dermoscopic features of melanoma. With this in mind, we examined a large series of sequential dermoscopic images of melanocytic lesions with these global patterns but without other specific dermoscopic features of melanoma. The aim was to define which global patterns may predict melanoma in nevi that show no dermoscopic features of melanoma.

METHODS

Dermoscopic images of 3367 melanocytic lesions, excluding lentigo maligna and lentigo maligna melanoma (n=341 melanomas), imaged at the Sydney Melanoma Unit (Sydney Melanoma Diagnostic Centre, Sydney, Australia) since 1991 were examined by 2 observers (A.A. and D.A.). The images were obtained using a dermoscopic camera (Dermaphot; Heine Ltd, Herrsching, Germany) or a digital imaging device (So-
larScan; Polartecnics Ltd, Sydney, Australia). Only those lesions with a histopathologic diagnosis or those that remained unchanged following short-term (2.5–4.5 months) digital monitoring (and hence diagnosed as benign). were of good quality, and were inside the full field of view (14 × 9 mm, Dermaphot; 24 × 18 mm, SolarScan) were used in the study (Figure 1). The lesions were then examined, with the observers blinded to diagnosis, for melanoma-specific features using the Menzies method. For a diagnosis of melanoma to be made according to the Menzies method, a lesion must have none of the 2 negative features of symmetry of pattern, it cannot have a single color, and it must have 1 or more of the following 9 positive features of melanoma: blue-white veil, pseudopods, radial streaming, peripheral black dots or globules, multiple brown dots, multiple blue-gray dots, scarlike depigmentation, broadened network, and multiple (5–6) colors. In this study, the Menzies method was chosen because it has repeatedly been shown to have the highest sensitivity for melanoma compared with other dermoscopy methods. All lesions were then scored for the global patterns of EH (true and pseudo), CH, MH/HP, and MCP. True EH was defined as a single focus greater than 1 mm in diameter of the darkest pigment (at least dark brown) that touches the border but does not traverse the lesion. Pseudo-EH shows a single dark focus greater than 1 mm that does not touch the border but is found in half (bisected) of the lesion. Central hyperpigmentation is a single focus of the darkest pigment greater than 1 mm diameter that does not touch the border but is found in the center (of gravity) of the lesion.

RESULTS

When the frequency of the global dermoscopic patterns of all melanomas was compared with those of benign melanocytic lesions, true EH (OR, 3.3) and the MCP (OR, 15.4) were significant predictors of melanoma (Table 1). However, 92% (n = 315) of melanomas and 28% (n = 846) of benign melanocytic lesions had specific dermoscopic features of melanoma (positive Menzies score). When all lesions without specific dermoscopic features of melanoma (negative Menzies score) were examined, there was no significant difference in any of the global patterns between the dermoscopically featureless melanomas (n = 26) and the benign melanocytic lesions (Table 2).

A number of investigators have reported that the global features of EH and MH/HP occur in benign nevi. In the original study by Hofmann-Wellenhof et al, who examined 829 atypical nevi in 23 individuals, 7.6% of the lesions had EH and 29% had MH/HP. None had MCP. Bologna et al, using nondermoscopic naked-eye examination found that only 3 of 59 nevi (5%) with EH (black dots) were melanoma arising within a nevus. It is unknown whether the 3 melanomas had dermoscopic features of melanoma. Pizzichetta et al described a small series of childhood nevi with EH, with some losing the feature over time. Zalaudek et al examined 1268 nevi in a wide age-selected population of 50 individuals and showed that 5% had EH, with no age trend, and 19% had MH/HP, which were less common in individuals younger than 31 years. In a more recent, larger study in which skin type and global nevus patterns of consecutive white-skinned patients in pigmented lesion clinics were analyzed, similar results were seen, with 3.1% of nevi having EH, 19.3% having MH/HP, and 20.7% having CH.

Two studies have examined these global patterns both in benign melanocytic lesions and in melanomas. In the original study by Blum et al, 30% of the 254 lesions ex-
examined were melanomas. In that study, EH was a significant predictor of melanoma, with an OR of 2.9, which was consistent with our results (OR, 3.3). Their observation that an MCP was a highly significant feature of melanoma was also consistent with our findings (OR, 13 in their study vs OR, 15 in our study). They did not report whether any of the melanomas lacked the specific dermoscopic features of melanoma. In contrast to our study findings, MH/HP was also seen to be a less, but still significant predictor of melanoma (OR, 2.2). The low frequency of this pigmentation in both nevi and melanomas that we observed may be attributable to a more stringent definition.
monitoring over a 3-month period. Such lesions are usu-
frequently by the use of short-term digital dermoscopy
cally featureless. In our clinic, these are detected most
melanoma using the Menzies method, as in our study.

had EH. It is unknown whether these had any features of
lesions (33% predominantly invasive melanomas) that were
raised. Featureless melanomas are also detected by long-
tering. Such lesions are never nodular or significantly
patient history of change also undergo short-term moni-
sions with greater architectural disorder and without a
feature. For this reason, we do not believe that such le-
sion require closer observation than other benign nevi
feature, which lack specific dermoscopic features of melanoma. In this regard, there was
no difference between the frequency of EH, MCP, or any other global pattern in melanomas vs benign nevi among such lesions. Indeed, all 51 lesions that had true EH (and 35 more with pseudo-EH) without other specific features of melanoma were benign. While the MCP is a highly significant feature of melanoma overall (OR, 15), only 2 featureless melanomas had the MCP, and there was no difference in the proportion of benign nevi that had this feature. For this reason, we do not believe that such lesions require closer observation than other benign nevi that lack specific dermoscopic features of melanoma on morphological grounds alone.

Our results confirmed the above-mentioned findings
that EH and the MCP are significant predictors of mel-
oma. However, 92% of the total melanomas in our study
had specific dermoscopic features of melanoma and could
be diagnosed without reference to these global patterns.
Because of the high prevalence of these global patterns in nevi, we wanted to find out whether any of the pat-
ters could be used to differentiate melanomas from nevi
among melanocytic lesions that lack specific dermo-
scopic features of melanoma. In this regard, there was
no difference in the proportion of benign nevi that had this
feature among melanocytic lesions that lack specific der-
oscopic features of melanoma. In this regard, there was
no difference in the proportion of benign nevi that had this
feature among melanocytic lesions that lack specific dermo-

capital pattern and little architectural disor-

Table 2. Frequency of Global Patterns in 26 Melanomas and 2180 Benign Melanocytic Lesions Lacking Specific Dermoscopic Features of Melanoma

<table>
<thead>
<tr>
<th>Global Pattern</th>
<th>Melanomas</th>
<th>Benign Melanocytic Lesions</th>
<th>Odds Ratio (95% Confidence Interval)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>True eccentric</td>
<td>63 (18.5)</td>
<td>192 (6.3)</td>
<td>3.3 (2.5-4.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Pseudo-eccentric</td>
<td>6 (1.7)</td>
<td>61 (2.0)</td>
<td>. . .</td>
<td>.75</td>
</tr>
<tr>
<td>Central</td>
<td>5 (1.5)</td>
<td>90 (3.0)</td>
<td>. . .</td>
<td>.11</td>
</tr>
<tr>
<td>Hyper/hypopigmentation</td>
<td>0</td>
<td>17 (0.5)</td>
<td>. . .</td>
<td>.41</td>
</tr>
<tr>
<td>Multicomponent</td>
<td>174 (51)</td>
<td>470 (15.5)</td>
<td>15.4 (11.9-19.9)</td>
<td><.001</td>
</tr>
<tr>
<td>No pattern</td>
<td>129 (37.8)</td>
<td>2297 (75.9)</td>
<td>0.19 (0.15-0.24)</td>
<td><.001</td>
</tr>
</tbody>
</table>

a When a global pattern was significantly different using χ² analysis (or Fisher exact test when relevant), the odds ratio for the diagnosis of melanoma was calculated.

of this feature in our study, with the multifocal pigmen-
tation occupying the entire lesion in a relatively uniform
distribution. More recently, Fikrle et al studied 180 les-
sions (33% predominantly invasive melanomas) that were
excised because dermoscopic findings led to some suspi-
cion of melanoma. They found that, for the diagnosis of
melanoma, EH had an OR of 2.8, MH/HP had an OR of
7.5, and MCP had an OR of 11 (ORs derived from the tabled
data). In contrast to our results, 5 of 7 false-negative mela-

Table 1. Frequency of Global Dermoscopic Patterns in 341 Melanomas and 3026 Benign Melanocytic Lesions

<table>
<thead>
<tr>
<th>Global Pattern</th>
<th>Melanomas</th>
<th>Benign Melanocytic Lesions</th>
<th>Odds Ratio (95% Confidence Interval)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>True eccentric</td>
<td>63 (18.5)</td>
<td>192 (6.3)</td>
<td>3.3 (2.5-4.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Pseudo-eccentric</td>
<td>6 (1.7)</td>
<td>61 (2.0)</td>
<td>. . .</td>
<td>.75</td>
</tr>
<tr>
<td>Central</td>
<td>5 (1.5)</td>
<td>90 (3.0)</td>
<td>. . .</td>
<td>.11</td>
</tr>
<tr>
<td>Hyper/hypopigmentation</td>
<td>0</td>
<td>17 (0.5)</td>
<td>. . .</td>
<td>.41</td>
</tr>
<tr>
<td>Multicomponent</td>
<td>174 (51)</td>
<td>470 (15.5)</td>
<td>15.4 (11.9-19.9)</td>
<td><.001</td>
</tr>
<tr>
<td>No pattern</td>
<td>129 (37.8)</td>
<td>2297 (75.9)</td>
<td>0.19 (0.15-0.24)</td>
<td><.001</td>
</tr>
</tbody>
</table>

a Negative Menzies score.

b There was no significant difference in any of the global patterns between
melanomas and benign melanocytic lesions (2-sided Fisher exact test).

Accepted for Publication: October 12, 2007.

Correspondence: Scott Menzies, MBBS, PhD, Faculty of Medicine, University of Sydney, Sydney Melanoma Di-
agnostic Centre, Sydney Cancer Centre, Royal Prince Al-
fred Hospital, Camperdown, NSW 2050, Australia (scott
.menzies@sswhs.nsw.gov.au).

Author Contributions: Dr Menzies had full access to all
the data in the study and takes responsibility for the in-
tegrity of the data and the accuracy of the data analysis.

Study concept and design: Arevalo, Blum, and Menzies.
Acquisition of data: Arevalo, Altamura, Avramidis, and Menzies.
Analysis and interpretation of data: Menzies. Drafting of the
manuscript: Menzies. Critical revision of the manuscript for
important intellectual content: Arevalo, Altamura, Avramidis,
and Blum. Statistical analysis: Menzies. Obtained funding:
Menzies. Administrative, technical, and material support:
Menzies. Study supervision: Menzies.

Financial Disclosure: None reported.

REFERENCES

Critically Appraised Topics (CATs)

We invite authors to submit manuscripts for the Critically Appraised Topics (CATs) feature. CATs appear quarterly in the Evidence-Based Dermatology section.

CATs are written summaries of the application of the practice of evidence-based medicine to specific clinical problems. The problem is translated into an answerable, 4-part, well-structured question; the best evidence to answer the question is identified; the evidence is critically appraised for its validity, magnitude, and precision; and the evidence is applied back to the patients. Essentially, CATs are mini-systematic reviews of narrow, patient-focused questions that are not easy to find in a textbook. For example, after a clinical encounter, a patient-oriented question might be formulated, which would then be followed by a search for relevant high-quality information to answer that question. The identified studies will be briefly and critically appraised, then applied back to the patient along with the commentary.

CATs should be no longer than 2 published pages, with a maximum 20 references. The title may be a question. The manuscript should contain the following headings within the text: Clinical Question, Background, Literature Search, Appraisal of the Evidence, Limitations of the CAT, Clinical Bottom Line, and What Happened to the Patient.

Instructions for authors are located at http://www.archdermatol.com. Completed manuscripts are submitted at http://manuscripts.archdermatol.com. We look forward to reviewing your submissions.