Germany) and scanned as JPEG images. Lesions with poor image quality were excluded. The first 50 good-quality images in each category were included. These lesions were different from the ones in our group’s prior study.1

The evaluators were 2 dermatology residents with less than 1.2 years of dermoscopic experience who had not participated in our group’s prior study.1 One had taken two 1-day dermoscopy courses, and the other had spent 2 months studying with Scott W. Menzies, MD. They had no other specific dermoscopic training.

The evaluators independently reviewed the paired clinical and dermoscopic images of the selected 150 lesions using 4 different dermoscopic algorithms in no particular order: CASH,1 ABCD,2 the Menzies method,3 and the 7-point checklist.4 The CASH and ABCD algorithms did not have statistically significant differences compared with the Menzies method and the 7-point checklist. The CASH and ABCD algorithms did not have statistically significant different specificities.

The outcome variable in this study was dichotomous (benign melanocytic nevus or malignant melanoma) for each study lesion. The sensitivities and specificities were calculated for each algorithm and were compared with those of CASH.

The sensitivities of all 4 algorithms ranged from 76% for the 7-point checklist to 92% for the Menzies method (Table). None showed a statistically significant difference compared with CASH. The sensitivity of CASH was similar to that of ABCD (87% vs 86%). However, CASH showed a significantly higher specificity than the Menzies method and the 7-point checklist. The CASH and ABCD algorithms did not have statistically significant different specificities.

As CASH and ABCD have higher specificities than the other two algorithms, they would be less likely to result in unnecessary biopsies.

We hope to repeat this study with a large number of evaluators to further validate the CASH algorithm in a consensus Internet meeting on dermoscopy.3

Correspondence: Dr Stein, New York University School of Medicine, Ronald O. Perelman Department of Dermatology, 550 First Ave, New York, NY 10016 (jas231@med.nyu.edu).

Financial Disclosure: None reported.

Correlation of Subjective Self-reported Melanoma Growth Rate With Objective Tumor Proliferation Markers

Previous studies, using patient recall, have suggested that melanoma growth rate may be an independent prognostic marker and that rapid growth tends to occur in older men and have nodular morphologic characteristics and a different clinical presentation from other melanomas.2

Retrospective recall of time delay leading up to melanoma diagnosis is regarded by some as unreliable.3 However, there is no other practical method by which to evaluate the evolution of a melanoma from the outset. In a previous study,2 the ratio between Breslow thickness and time interval for a melanoma to develop was used as an estimate for mela-
Results. The intraclass correlation coefficients for interassessor agreement were 0.91 for PH3 and 0.89 for Ki67, indicating an excellent level of agreement. We found that similar to the correlation with mitotic rate, ROG was significantly associated with the Ki67 score (Spearman rank correlation coefficient, 0.44; \(P < .001 \)) (Figure 1) and with the PH3 score (Spearman rank correlation coefficient, 0.46; \(P < .001 \)) (Figure 2).

Comment. Although retrospective recall of events leading up to a diagnosis of melanoma is associated with several potential sources of error, clinical history remains the only practical tool to assess the evolution of melanomas from their inception. Herein, we have demonstrated a significant correlation between the patient-recall–based ROG and objective assessments of melanoma proliferation using immunohistochemical markers at the time of excision. One limitation of this comparison is that ROG examines the development of a melanoma over its whole course, whereas immunohistochemical markers examine only the state of proliferation at the time of removal.

These findings provide further evidence for the value of ROG in the clinical assessment of melanoma growth kinetics.

Wenyuan Liu, MBChB, MD
Grant A. McArthur, MB PhD
Melanie Trivett, PhD
William K. Murray, MBBS
Rory Wolfe, BSc, PhD
John W. Kelly, MBBS, MD

Correspondence: Dr Liu, Victorian Melanoma Service, Alfred Hospital, PO Box 315, Prahran, Melbourne, Victoria 3181, Australia (wenyuan_liu@hotmail.com).

Financial Disclosure: None reported.

Left-Sided Excess in the Laterality of Cutaneous Melanoma

An unequal distribution of cancer laterality, particularly in paired organs, has long been documented and generally thought to be related to asymmetries in organ size or behavioral factors such as handedness. Recently in a large series patients with cancers in the left testis, right lung, and left ovary were found...