serve as a useful learning and assessment tool to enhance dermatology resident education.

Stephanie Wang, BS
Lynda Shadrake, BS
Milena J. Lyon, MD
Hajwa Kim, MS, MA
Rachel Yudkowsky, MD, MHPE
Claudia Hernandez, MD

Author Affiliations: Department of Dermatology, University of Illinois at Chicago (Wang, Lyon, Hernandez); Department of Medical Education, University of Illinois at Chicago Graham Clinical Performance Center (Shadrake, Yudkowsky); University of Illinois at Chicago Center for Clinical and Translational Science (Kim).

Accepted for Publication: September 5, 2014.

Corresponding Author: Stephanie Wang, BS, Department of Dermatology, University of Illinois at Chicago, 808 S Wood St, Room 376 CME, Chicago, IL 60612 (swang36@uic.edu).

Published Online: November 12, 2014. doi:10.1001/jamadermatol.2014.3646.

Author Contributions: Ms Wang and Dr Hernandez had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Wang, Yudkowsky, Hernandez.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Wang, Lyon, Hernandez.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Kim, Hernandez.

Obtained funding: Hernandez.

Administrative, technical, or material support: Wang, Shadrake, Lyon, Yudkowsky.

Study supervision: Yudkowsky, Hernandez.

Conflict of Interest Disclosures: None reported.

Funding/Support: This project described was supported in part by the University of Illinois at Chicago Council for Excellence in Teaching and Learning, Curriculum and Instruction Grant and by the National Center for Advancing Translational Sciences, National Institutes of Health, through grant ULTROD0050 (Ms Kim).

Role of the Funder/Sponsor: The study was approved by the institutional review board of the Memorial Sloan Kettering Cancer Center. The study used a 3-by-2 experimental pre-post design, where feedback type and risk level were varied and participants were randomized to 1 of the 6 scenario conditions. For feedback type, “mutation feedback” was modeled on inherited mutations in CDKN2A (gene encoding p16INK4A) linked to hereditary melanoma. “Gene environment feedback” was modeled on the melanocortin receptor gene (MC1R), which interacts with sun exposure to heighten population melanoma risk. “Non-genetic feedback” was based on a nongenetic melanoma risk assessment that includes factors such as mole number. Risk level was varied by whether the findings were positive (test identified higher risk) or negative. All scenarios explicitly reminded participants of their increased risk due to family history regardless of test findings.

Assessment of family discussions at baseline (before scenario exposure), asked how much (Not at all to A lot) participants had spoken about melanoma risk with their (a) mother, (b) father, (c) sister(s), (d) brother(s), (e) children, and (f) grandchildren (if they currently had this relative). Assessment at follow-up (after scenario exposure), asked how much participants intended to speak about melanoma risk with each family member.

The McNemar test of change in proportions was used to test pre-post changes in discussion rates. A generalized estimating equation (GEE) model was used to account for the clustered data of multiple family members per participant and to examine the extent to which the experimental manipulations influenced intention to discuss melanoma risk at follow-up.

Results | The sample (N = 139) was mostly female (n = 97 [70%]) and non-Hispanic white (n = 135 [97%]). The median age was 48 years; most patients had only 1 FDR with melanoma (n = 128 [92%]) and no personal melanoma history (n = 110 [79%]). Approximately half (n = 76 [55%]) had a sun-sensitive phenotype (skin type I/II, indicating skin prone to burning). Baseline discussion rates did not differ by experimental conditions (P > .05 for all).

At baseline, frequency of melanoma risk discussions across all family member types was higher, on average, among women than men (t135,47 = 2.34, P < .05), but did not differ based on whether they had 1 or more FDRs with melanoma, whether they had a personal history of melanoma, or whether they had a sun-sensitive phenotype (skin type I/II) or not (P > .05 for all). The GEE model—estimated intentions were higher if the participant received positive (n = 128 [92%]) rather than negative (n = 100 [72%]) feedback (χ2 = 11.98, P = .001). There were no significant differences by feedback type, nor a significant interaction (risk level by feedback type). As reported in the Figure, discussion with all family members increased signifi-

Family Risk Discussions After Feedback on Genetic Risk of Melanoma

First-degree relatives (FDRs) of patients with melanoma may be among the first to seek melanoma genetic risk information. Testing may subsequently prompt useful discussions regarding melanoma risk, early detection, and prevention with multiple family members. To explore this potential, this study examined the intended discussions of FDRs of patients with melanoma with diverse family members after receiving hypothetical melanoma genetic risk feedback information.

Methods | The study was approved by the institutional review board of the Memorial Sloan Kettering Cancer Center. The study used a 3-by-2 experimental pre-post design, where feedback type and risk level were varied and participants were randomized to 1 of the 6 scenario conditions. For feedback type, “mutation feedback” was modeled on inherited mutations in CDKN2A (gene encoding p16INK4A) linked to hereditary melanoma. “Gene environment feedback” was modeled on the melanocortin receptor gene (MC1R), which interacts with sun exposure to heighten population melanoma risk. “Non-genetic feedback” was based on a nongenetic melanoma risk assessment that includes factors such as mole number. Risk level was varied by whether the findings were positive (test identified higher risk) or negative. All scenarios explicitly reminded participants of their increased risk due to family history regardless of test findings.

Assessment of family discussions at baseline (before scenario exposure), asked how much (Not at all to A lot) participants had spoken about melanoma risk with their (a) mother, (b) father, (c) sister(s), (d) brother(s), (e) children, and (f) grandchildren (if they currently had this relative). Assessment at follow-up (after scenario exposure), asked how much participants intended to speak about melanoma risk with each family member.

The McNemar test of change in proportions was used to test pre-post changes in discussion rates. A generalized estimating equation (GEE) model was used to account for the clustered data of multiple family members per participant and to examine the extent to which the experimental manipulations influenced intention to discuss melanoma risk at follow-up.

Results | The sample (N = 139) was mostly female (n = 97 [70%]) and non-Hispanic white (n = 135 [97%]). The median age was 48 years; most patients had only 1 FDR with melanoma (n = 128 [92%]) and no personal melanoma history (n = 110 [79%]). Approximately half (n = 76 [55%]) had a sun-sensitive phenotype (skin type I/II, indicating skin prone to burning). Baseline discussion rates did not differ by experimental conditions (P > .05 for all).

At baseline, frequency of melanoma risk discussions across all family member types was higher, on average, among women than men (t135,47 = 2.34, P < .05), but did not differ based on whether they had 1 or more FDRs with melanoma, whether they had a personal history of melanoma, or whether they had a sun-sensitive phenotype (skin type I/II) or not (P > .05 for all). The GEE model—estimated intentions were higher if the participant received positive (n = 128 [92%]) rather than negative (n = 100 [72%]) feedback (χ2 = 11.98, P = .001). There were no significant differences by feedback type, nor a significant interaction (risk level by feedback type). As reported in the Figure, discussion with all family members increased signifi-
significant melanoma risk presents multiple opportunities for family risk awareness and prevention. Findings indicate that FDRs of patients with melanoma are likely to talk with a range of family members about melanoma risk and that positive risk feedback (high-risk mutation, gene environment, and nongenetic) increases intended discussions more than negative feedback. Increased communication with siblings and children, in particular, may be a worthwhile outcome of melanoma genetic testing. Specific guidance on the importance of family communication and risk reduction may be particularly important in the provision of negative genetic testing information.

Jennifer L. Hay, PhD
Mallorie Gordon, MA
Yuelin Li, PhD

Author Affiliations: Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York (Hay, Li); Department of Psychology, New School for Social Research, New York, New York (Gordon).

Accepted for Publication: August 11, 2014.

Corresponding Author: Mallorie Gordon, MA, Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, 641 Lexington Ave, Seventh Floor, New York, NY 10022 (mgordon@mskcc.org).


Author Contributions: Drs Hay and Li had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Hay, Gordon.

Acquisition, analysis, or interpretation of data: Hay, Gordon. Li.

Drafting of the manuscript: Hay, Gordon.

Critical review of the manuscript for important intellectual content: All authors.

Statistical analysis: Li.

Obtained funding: Hay.

Administrative, technical, or material support: Hay, Gordon.

Study supervision: Hay.

Conflict of Interest Disclosures: None reported.

Funding/Support: This study was supported in part by The Martell Foundation.

Role of the Funder/Sponsor: The Martell Foundation had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: Charlotte Ariyan, MD, PhD, Mary Sue Brady, MD, and Daniel Coit, MD, provided clinic and patient access. We thank our study participants for their valued participation.


Coexistence of Staphylococcal Scalded Skin Syndrome and Acute Graft-vs-Host Disease

We report a case of adult staphylococcal scalded skin syndrome (SSSS) superimposed on acute graft-vs-host disease (GVHD) and discuss the unique histologic features of both conditions seen on skin biopsy.

Report of a Case | A man in his 60s with a history of myelodysplastic syndrome underwent a matched unrelated donor hematopoietic stem cell transplant (HSCT) after conditioning with fludarabine and total-body irradiation. Prophylaxis against GVHD included cyclosporine A, 175 mg, and mycophenolate mofetil, 1000 mg, both given orally twice daily. On day 35 after HSCT, the patient developed nonsteroidal inflammatory macules and papules on the thighs, which subsequently spread to the trunk and extremities. The patient later developed diarrhea and mildly elevated serum total bilirubin levels (1.5 mg/dL). Skin and colon biopsies confirmed acute GVHD, and the patient was treated with intravenous methylprednisolone, 200 mg/d, with resolution of symptoms.

On day 144 after HSCT, the patient developed diarrhea and mildly tender diffusely scattered erythematous macules and papules on the trunk, neck, face, and extremities, along with acute kidney injury (creatinine, 2.94 mg/dL). Owing to a recent fever, the patient began treatment with intravenous li-