ture and pigment (Figure 1). Twenty-seven patients had neck texture, 21 had neck pigment, 23 had axilla texture, and 18 had axilla pigment.

Discussion | Our study used visible rather than palpable neck texture because we found visible texture grading to be more reproducible. Consensus was obtained for all visible neck and axillary features, but Burke et al.4 have noted that reproducibility of palpable texture was limited (κ=0.68). In our study also, neck texture was determined to be the most sensitive marker: 8 patients with elevated HOMA-IR showed neck texture change without pigment change. Puri et al.3 found hyperkeratosis (thickened stratum corneum) to be the most common histopathological feature of AN: all AN lesions in that study exhibited hyperkeratosis, whereas 90% exhibited papillomatosis (histopathologic equivalent of wartiness). The use of visible neck texture as an indicator of AN is advantageous because the visible roughness of the neck is recognizable without touching the skin or requiring the patient to disrobe, affording an instant assessment of AN. Texture grading also avoids possible confounding by sun-induced pigmentation. Thus, neck texture exhibits both greater sensitivity and specificity than neck pigment for AN detection.

This study clinic's patient population was approximately 92% white, limiting the application of our results to other populations. With HOMA-IR varying among populations,6 there is no agreement on HOMA-IR cutoffs. Accordingly, the most sensitive among suggested HOMA-IR cutoffs was used in this study.3

Results of this study confirm those of Stuart et al.,1 who found IR in 93% to 99% of patients with AN of the neck. Kong et al.7 stated that AN was most difficult to detect in fair-skinned persons, indicating the need for measures with greater sensitivity in these persons. The use of neck texture, rather than pigment on the neck or other anatomic locations, yields this increased clinical sensitivity. Although many physicians observe the axilla to determine AN, 4 patients with IR would have been missed with only axillary observation (Figure 2). Because neck texture is the most sensitive finding for AN, we propose the term insulin neck for this finding. All patients with elevated BMI should be examined for insulin neck.

This research report has 3 take-home points for the clinician:
1. Insulin neck (visibly increased texture on the posterolateral neck) is the most sensitive physical finding for IR.
2. Insulin neck appears as visible lines and/or furrows and ridges on the posterolateral neck.
3. If neck texture is normal, IR is less likely to be present.

Katie S. Payne
Ryan K. Rader, BS
Guido Lastra, MD
William V. Stoecker, MS, MD

Author Affiliations: Stoecker & Associates, Rolla, Missouri (Payne, Rader, Stoecker); Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Missouri School of Medicine, Columbia (Lastra); Department of Dermatology, University of Missouri School of Medicine, Columbia (Stoecker); student at Missouri University of Science and Technology, Rolla (Payne).

Corresponding Author: William V. Stoecker, MS, MD, Stoecker & Associates, 10101 Stoltz Dr, Rolla, MO 65401 (wvs@mst.edu).

Author Contributions: Ms Payne and Dr Stoecker had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Lastra, Stoecker.

Acquisition of data: Rader.

Analysis and interpretation of data: All authors.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: Payne, Rader, Stoecker.

Statistical analysis: Rader, Stoecker.

Study supervision: Lastra, Stoecker.

Conflicts of Interest Disclosures: None reported.

Additional Contributions: David Klachko, MD, Department of Endocrinology, University of Missouri School of Medicine, who taught his students to perform a careful physical examination, inspired this study. Kristen Hinton, BS, assisted in enrolling patients for this study.


Attitudes and Perceptions of School-Aged Children Toward Alopecia Areata

Although not life-threatening, alopecia areata (AA) is associated with increased rates of depressive symptoms and anxiety in children.3 This study investigates how schoolchildren, from kindergarten (K) through grade 8, perceive those with AA and the associated social ramifications.

Methods | After receiving institutional review board approval, we developed a study participant group of 123 school children, grades K through 8, separated by grade. Half the subjects were interviewed as individuals and half as pairs, and all were shown a photograph of a child with AA (Figure). The investigators observed and recorded the initial subjects’ reactions. Responses to a series of questions regarding their attitudes toward the photograph were analyzed to assess differences in children’s attitudes toward those with AA across grade level, sex, and interview format.
Results | When initially viewing the photograph of a child with AA, children in grades K through 3 were more likely to show discomfort; 20% were visibly uncomfortable (n = 19), often looking away from the photograph. Another 27% displayed expressions of surprise and shock (n = 26). None of the children in grades 5 through 8 revealed any apparent discomfort. Those interviewed in pairs were 3 times more likely to express discomfort. When asked how they would feel if one of their classmates lost their hair, all subjects across all grade levels responded with the majority answer of “sad.” Children interviewed in pairs were 3 times more likely to admit they would be “scared” or “shocked.”

When the children were asked if they thought the child with AA was sick or dying, 42% of those in grades K through 3 (n = 41) and 54% in grades 5 through 8 (n = 14) thought the child was sick, and 21% in grades K through 3 (n = 20) thought they were dying. Those in grades K through 3 were 6 times more likely than older children to think that the child was dying. A common theme in all age groups was that the children were curious and wanted to know “what happened?”

When the children were asked if they would be afraid to get close to someone with AA, children in grades K through 3 were 5 times more likely than older children to state that they would be afraid (37%; n = 36). A total of 88% of the older children (grades 5–8; n = 23) stated that they would not be afraid. Boys were more likely than girls to admit being afraid of getting close to someone with AA.

Discussion | The most significant differences in survey responses were seen across grade levels, implying that children’s developmental age has a strong impact on their view of others with AA. This was demonstrated by a consistent natural transition in responses at around the third grade, artificially dividing these children’s opinions into younger (grades K–3) and older (grades 5–8) opinions of AA.

Younger children were much more likely to display apparent discomfort when viewing the photograph and believe the child to be dying or contagious. This demonstrates an evolving concept of illness with age, with younger children more likely to view hair loss as deadly and transmissible, leading to isolation of younger children with AA.

There were few differences in perception based on sex. Students were assessed in pairs to discover potential components of peer influence on the negative views of others. One notable difference in pair responses was increased expression of surprise and shock at seeing a photograph of someone with AA. For most questions, individuals within a pair tended to agree, suggesting that children are likely to influence each other when in groups, implying an element of peer pressure in singling out someone who is perceived as different.

Our findings emphasize the importance of recognizing how the change in appearance associated with AA can affect how a child is viewed by peers. Previous studies have shown that appearances can be the greatest factor in social isolation of school-age children, especially girls. Negative peer views of appearance have been associated with decreased rates of peer acceptance and popularity and increased disruptive behavior.

By understanding how children perceive and react to hair loss, health care professionals will be better equipped to counsel children, families, and teachers about AA. The following key educational points from our study that should be shared with the patient, family, and school to help avoid isolation caused by AA:

1. AA is not life-threatening; the child is healthy;
2. AA is not contagious; and
3. Children at all grade levels are curious; we should educate them about AA.

Andrew Hankinson, MD
Heidi McMillan, MD
Jeffery Miller, MD, MBA

Author Affiliations: Penn State College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania (Hankinson, McMillan); Pediatric Partners of the West, Durango, Colorado (McMillan); Department of Dermatology, Penn State College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania (Miller).

Corresponding Author: Andrew Hankinson, MD, Penn State College of Medicine, The Milton S. Hershey Medical Center, 107 Townhouse Rd, Hershey, PA 17033 (carlohank@gmail.com).

Author Contributions: All authors had access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: McMillan, Miller.

Acquisition of data: McMillan, Miller.

Analysis and interpretation of data: Hankinson, McMillan, Miller.

Drafting of the manuscript: Hankinson, McMillan, Miller.

Critical revision of the manuscript for important intellectual content: Hankinson, Miller.

Study supervision: Hankinson, Miller.

Conflict of Interest Disclosures: None reported.

Funding/Support: This study was supported in part by the Hershey Chapter of the Children’s Miracle Network.

Role of the Sponsors: The sponsors had no role in the design and conduct of the study; in the collection, analysis, and interpretation of data; or in the preparation, review, or approval of the manuscript.

Letters
Deep Labiomental Fold With Pseudocomedones
The labiomental fold is a transverse indentation of the face, which marks the intersection of the lower lip and chin.1 It plays a significant role in movement of the lower lip and in facial expression. We describe herein a child with a linear pattern of microcomedones located along a deep labiomental fold.

Report of a Case | A 7-year-old healthy girl presented with a line of black papules on her chin. On examination, the child had a protruded chin with a relatively deep labiomental groove. Several open comedones were aligned along the groove (Figure). Acneiform lesions were not present in any other location on her face or upper trunk.

Discussion | Three muscles, the circular orbicularis oris, depressor labii inferioris, and mentalis, align the labiomental fold or cross it as they pass to their insertion.2 They serve as paired elevators of the central lower lip.3 They usually overlap and insert into the deep dermis of the chin pad. Patients with substantial overlap of the mentalis muscles tend to have a deep labiomental fold.3 The presence of a deep labiomental fold is a relatively common condition and may sometimes cause an aesthetic concern.4 Procedures for treating deep labiomental fold are sometimes discussed in the plastic surgery literature, but it has been rarely reported in the dermatology literature. To our knowledge, this is the first report of a dermatologically related condition associated with this fold.

Another prevalent transverse linear crease of the face, the nasal crease, appears across the lower third of the nasal dorsum. In some cases, changes of pigmentation, milia, or pseudo-comedones are present along the nasal crease.5 Transverse nasal milia in the absence of a transverse nasal crease are less frequently reported. Recently, our research team6 reported a case of seborrheic keratosis-like hyperplasia and horn cysts aligned along this crease. These findings were attributed to the fact that the triangular cartilage and the alar cartilage attach in a linear fashion at the junction of the middle and lower third of the nose, producing a potential embryonic fault line in which retention cysts presenting as milia and comedones can occur.5 Early acne lesions favor the forehead, nose, and chin in many children. Although many times overlooked, the external ear is another common location for open and closed comedones in young patients with acne.7 We think that the common concave surface of the nasal crease, deep labiomental fold, and external ear may facilitate the appearance of retention lesions in those locations.

In conclusion, we think that the labiomental fold, a transverse fold of the chin, can harbor retention cysts or comedones in a similar fashion to the nasal crease. Dermatologists should be aware of this fold, since it might be encountered in the dermatology practice and may be associated with additional dermatologic conditions.

Liran Horev, MD
Abraham Zlotogorski, MD
Yuval Ramot, MD, MSc

Author Affiliations: Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel (Horev, Zlotogorski, Ramot).
Corresponding Author: Liran Horev, MD, Department of Dermatology, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem 91120, Israel (liran.horev@gmail.com).
Conflict of Interest Disclosures: None reported.

Figure. Deep Labiomental Fold and Open Comedones in a Linear Pattern Along the Fold
Several comedone openings are marked by arrows.