nontypical pattern increased. There was a significant correlation between the frequency of dermoscopic pattern and age group ($P = .002$ for all). Furthermore, the peas-in-a-pod and fibrillar patterns were significantly prevalent in the younger-than-20-years group ($P < .001$) and the 20-to-39-years group ($P = .046$), respectively, and less prevalent in the older-than-59-years group ($P = .046$ and $P = .03$, respectively). Meanwhile, the nontypical pattern was significantly prevalent in the older-than-59-years group ($P < .001$) and less prevalent in the younger-than-20-years group ($P = .005$). There were no significant differences in the frequencies of parallel furrow and latticelike patterns between age groups. Parallel ridge, reticular, globular, and homogeneous patterns were regarded as unsuitable for statistical analysis because of the small sample size.

Discussion | This study revealed that the peas-in-a-pod and fibrillar patterns were common in younger patients, whereas the nontypical pattern was prevalent in older patients. The peas-in-a-pod pattern, previously reported as a characteristic pattern for small CMN, was also observed among AMN, with a significant prevalence in younger generation. The peas-in-a-pod pattern could be characteristic in volar skin during childhood, similar to the globular pattern in trunk and extremities. In the peas-in-a-pod pattern, dots on the ridges were histopathologically correlated with eliminated nevus cell nests in some cases. Further histopathological examination is essential to reveal the mechanism of age-related dermoscopic pattern as well as age-unrelated pattern. In addition, the frequency of the latticelike pattern was relatively low in this series. One possible reason is that some of the cases with peas-in-a-pod pattern were previously classified into the latticelike or parallel furrow pattern with dots because the peas-in-a-pod pattern was not widely known. Another reason could be the low number of AMN located in the arch area in this series, which is a favorite site of latticelike pattern. The investigation of site-related dermoscopic pattern is also required.

According to the revised 3-step dermoscopic algorithm for the management of acral acquired melanocytic lesions, lesions without typical benign patterns are considered for biopsy if the maximum diameter is more than 7 mm. The nontypical pattern was increased in the group older than 59 years, suggesting that acral AMN in older patients is more frequently considered for biopsy than in younger patients. Knowledge of age-related dermoscopic pattern is useful when examining melanocytic nevus.

Corkscreek Hair: A Trichoscopy Marker of Tinea Capitis in an Adult White Patient

Corkscreek hairs (CHs) were first described by Hughes et al as trichoscopy marker for diagnosis of tinea capitis (TC) in black children. However, we recently observed the same trichoscopic picture in an adult Italian white male.

Report of a Case | A healthy, 58-year-old white man, with skin phototype III, presented with a 2-week history of an itchy and inflammatory patch of alopecia, clinically characterized by large follicular pustules on the occipital and left retroauricular area (Figure 1). The remainder of the physical examination was negative for disease.

Digital trichoscopic images were collected using a video-dermatoscope (FotoFinder dermoscope, FotoFinder Systems GmbH) with $\times 20$, $\times 40$, and $\times 70$ magnifications showing comma hairs and a considerable number of corkscrew hairs (Figure 2). Findings from a swab were negative for bacteria, while fungal cultures of scalp scrapings identified Trichophyton tonsurans.

Discussion | While Hughes et al questioned whether CH is a variation of comma hair in the hair types of black patients or is specific to those with Trichophyton soudanense infection, other authors showed that CH is not specific to those with T.soudanense

Akane Minagawa, MD
Hiroshi Koga, MD
Hisashi Uhara, MD, PhD
Yoshihiro Yokokawa, PhD
Ryuhei Okuyama, MD, PhD

Author Affiliations: Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (Minagawa, Koga, Uhara, Okuyama); Department of Physical Therapy, Shinshu University School of Health Sciences, Matsumoto (Yokokawa).

Corresponding Author: Akane Minagawa, MD, Department of Dermatology, Shinshu University School of Medicine, 3-11-Asahi, Matsumoto 390-8621, Japan (akn@shinshu-u.ac.jp).

Letters

Accepted for Publication: February 27, 2013.
Published Online: June 26, 2013.

Author Contributions: Drs Minagawa and Koga had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Minagawa, Okuyama.

Acquisition of data: Minagawa.

Analysis and interpretation of data: Minagawa, Uhara, Yokokawa, Okuyama.

Drafting of the manuscript: Minagawa, Okuyama.

Critical revision of the manuscript for important intellectual content: Minagawa, Uhara, Yokokawa, Okuyama.

Statistical analysis: Yokokawa.

Obtained funding: Okuyama.

Administrative, technical, and material support: Okuyama.

Study supervision: Uhara, Okuyama.

Conflict of Interest Disclosures: None reported.

Funding/Support: This study was supported in part by the National Cancer Center Research and Development Fund (23-A-22).

OBSERVATION
infection and suggested that CH represents a specific trichoscopic finding of dermatophytosis of the scalp in the black race.

On the basis of the data reported in the literature, it would therefore seem likely that CH is related to endothrix trichophyton “black dots” TC in black children. However, the same trichoscopic picture was also observed in the Italian white man described herein. Interestingly, our patient had naturally curly hair, a characteristic more evident in the black population, whose hair tends to be elliptical in cross section with a variable diameter along its shaft that resembles a twisted, oval rod.

In our opinion, the trichoscopic finding of CH seems to be a variation of the comma hair of tinea capitis, as described by Slowinska et al, suggesting that it is not a peculiar manifestation in black patients but rather a possible manifestation related to curly hair. Further investigation is needed to confirm our hypothesis.

Iria Neri, MD
Michela Starace, MD
Annalisa Patrizi, MD
Riccardo Balestri, MD

Author Affiliations: Department of Specialist, Diagnostic, and Experimental Medicine, Dermatology Unit, University of Bologna, Italy (Neri, Starace, Patrizi, Balestri).

Corresponding Author: Iria Neri, MD, Department of Specialist, Diagnostic, and Experimental Medicine, Dermatology Unit, University of Bologna, Via Massarenti 1, 40138 Bologna, Italy (iria.neri@aosp.bo.it).

Conflict of Interest Disclosures: None reported.

In Vivo Gram Staining of Tinea Versicolor

In this report, we demonstrate that tinea versicolor retains topical gentian violet. We did not observe this phenomenon in other hypopigmenting disorders, and thus this observation could be used as a simple bedside test. We call this phenomenon in vivo Gram staining.

Report of a Case | Gentian violet is a commonly used topical anti-infective that has efficacy against gram-positive bacteria and fungi. Given that gentian violet has a long track record in human skin disease, we routinely use it in the treatment of gram-positive cutaneous infections and fungal infections. However, we present a case of a patient who has been previously diagnosed with tinea versicolor and treated with topical therapy who noted persistence of lesions (Figure, A). We applied gentian violet to his skin and noted a dramatic accentuation of infected areas compared with unaffected skin (Figure, B). Confirmation of infection was made with potassium hydroxide preparation (Figure, C). We have named this phenomenon in vivo Gram staining.

Discussion | Gram stain is used to categorized bacteria into gram-positive and gram-negative organisms. The basic mechanism of Gram staining is the retention of crystal violet, which is another name for gentian violet. Gram-positive bacteria and fungi retain gentian violet in the presence of an alcohol wash, while gram-negative bacteria do not retain gentian violet because the compound does not penetrate the cell wall of gram-negative bacteria. The retention of gentian violet is likely due to the formation of an adduct, which is resistant to decolorization. Recently, our research group demonstrated that gentian violet forms a covalent adduct with thioredoxin reductase 2, a highly conserved protein from bacteria to humans, and is likely a candidate for the retention of gentian violet by the fungus. An additional explanation for selective dye retention is alterations in either host or fungal lipids. Unaffected skin does stain with gentian violet, but the affected areas stain more intensely.

This observation can serve as a potential bedside diagnostic test because other conditions, such as pityriasis rosea, atopic