Intractable Localized Pruritus as the Sole Manifestation of Intramedullary Tumor in a Child

Case Report and Review of the Literature

Razieh Soltani-Arabshahi, MD; Sheryll Vanderhooft, MD; C. David Hansen, MD

Importance: Persistent localized pruritus is a rare manifestation of central nervous system tumors. Delayed diagnosis can lead to devastating complications.

Observations: We report an otherwise healthy 19-month-old girl who presented with signs of localized intractable pruritus of 6 months’ duration on the left side of the neck, shoulder, and arm, resistant to systemic antihistamines and topical corticosteroids. Findings from skin biopsy, viral culture for varicella-zoster virus, and skin prick test to common food and animal allergens were nondiagnostic. Neurologic examination results were unremarkable. After several months of localized intractable pruritus, magnetic resonance imaging of the cervical spine with and without contrast was performed, which revealed an intramedullary spinal cord tumor extending from just above the foramen magnum to C6. The tumor was surgically resected and found to be a ganglioglioma. Within a week after the surgery her pruritus completely resolved.

Conclusions and Relevance: We recommend a detailed neurologic examination in any case of persistent localized pruritus, in the absence of primary dermatologic causes. Given the challenges of performing a reliable neurologic examination in children, neuroimaging might be considered in children with intractable localized pruritus of unknown etiology of the head and neck or upper extremity, even in the absence of focal neurologic deficits.

JAMA Dermatol. 2013;149(4):446-449

Localized pruritus without any primary dermatologic cause may be the presenting symptom of structural brain and spinal cord lesions including tumors. Herein, we describe a 19-month-old girl with a 6-month history of pruritus localized to the left side of the neck, shoulder, arm, and elbow, who had a spinal tumor in the cervical spinal cord. Her pruritus improved rapidly after surgical removal of the tumor.

Report of a Case

A 19-month-old previously healthy girl presented with localized intractable scratching of 6 months’ duration. This started as a 5-cm area on the left upper chest and gradually spread to her left shoulder, left side of the nape of the neck, and down to the left arm, left elbow, and lateral forearm. As a result of scratching, she developed excoriated papules localized to the aforementioned areas. Treatment with low-potency topical corticosteroids, cetirizine, and diphenhydramine had been unsuccessful. Her medical history was only notable for chronic ear infections, for which she had bilateral tympanostomy tubes placed. Her growth and development were normal. She had no other systemic symptoms. She had a family history of atopic dermatitis in both parents.

On physical examination, she had excoriated erythematosus papules and postinflammatory hypopigmentation and hyperpigmentation on the left posterior shoulder extending medially on her back to the posterior aspect of the neck on the left side, as well as on the left anterior shoulder and volar aspect of the left forearm (C2 though C6 dermatomes, not crossing the midline) (Figure 1).

Findings from bacterial culture and viral culture for herpes simplex and varicella-zoster virus performed on the excoriated papules were negative. A punch biopsy specimen of one of the excoriated papules showed mild spongiosis, hyperkeratosis, and superficial keratinocyte necro-
 neural pathways for itch include a “labeled-line” specific to itch with nonmedullated, mechanoinsensitive C fibers, and finely medullated polymodal C fibers. The primary peripheral afferent neurons ascend to the dorsal horn of the spinal cord, where they synapse with the second-order neurons. The axons of the second-order neurons cross the midline and eventually course through the spinal cord to thalamus. The activation of several brain areas, including the primary somatosensory cortex (S1), accessory somatosensory cortex, and insula seems to be involved in itch perception. Thus, lesions anywhere in the peripheral nervous system or CNS that damage itch-transducing, conducting, or processing neurons appear to be capable of causing neuropathic itch.

Neural pathways for itch include a “labeled-line” specific to itch with nonmedullated, mechanoinsensitive C fibers, and finely medullated polymodal C fibers. The primary peripheral afferent neurons ascend to the dorsal horn of the spinal cord, where they synapse with the second-order neurons. The axons of the second-order neurons cross the midline and eventually course through the spinal cord to thalamus. The activation of several brain areas, including the primary somatosensory cortex (S1), accessory somatosensory cortex, and insula seems to be involved in itch perception. Thus, lesions anywhere in the peripheral nervous system or CNS that damage itch-transducing, conducting, or processing neurons appear to be capable of causing neuropathic itch.

Neural pathways for itch include a “labeled-line” specific to itch with nonmedullated, mechanoinsensitive C fibers, and finely medullated polymodal C fibers. The primary peripheral afferent neurons ascend to the dorsal horn of the spinal cord, where they synapse with the second-order neurons. The axons of the second-order neurons cross the midline and eventually course through the spinal cord to thalamus. The activation of several brain areas, including the primary somatosensory cortex (S1), accessory somatosensory cortex, and insula seems to be involved in itch perception. Thus, lesions anywhere in the peripheral nervous system or CNS that damage itch-transducing, conducting, or processing neurons appear to be capable of causing neuropathic itch.

Neural pathways for itch include a “labeled-line” specific to itch with nonmedullated, mechanoinsensitive C fibers, and finely medullated polymodal C fibers. The primary peripheral afferent neurons ascend to the dorsal horn of the spinal cord, where they synapse with the second-order neurons. The axons of the second-order neurons cross the midline and eventually course through the spinal cord to thalamus. The activation of several brain areas, including the primary somatosensory cortex (S1), accessory somatosensory cortex, and insula seems to be involved in itch perception. Thus, lesions anywhere in the peripheral nervous system or CNS that damage itch-transducing, conducting, or processing neurons appear to be capable of causing neuropathic itch.

Neural pathways for itch include a “labeled-line” specific to itch with nonmedullated, mechanoinsensitive C fibers, and finely medullated polymodal C fibers. The primary peripheral afferent neurons ascend to the dorsal horn of the spinal cord, where they synapse with the second-order neurons. The axons of the second-order neurons cross the midline and eventually course through the spinal cord to thalamus. The activation of several brain areas, including the primary somatosensory cortex (S1), accessory somatosensory cortex, and insula seems to be involved in itch perception. Thus, lesions anywhere in the peripheral nervous system or CNS that damage itch-transducing, conducting, or processing neurons appear to be capable of causing neuropathic itch.

Neural pathways for itch include a “labeled-line” specific to itch with nonmedullated, mechanoinsensitive C fibers, and finely medullated polymodal C fibers. The primary peripheral afferent neurons ascend to the dorsal horn of the spinal cord, where they synapse with the second-order neurons. The axons of the second-order neurons cross the midline and eventually course through the spinal cord to thalamus. The activation of several brain areas, including the primary somatosensory cortex (S1), accessory somatosensory cortex, and insula seems to be involved in itch perception. Thus, lesions anywhere in the peripheral nervous system or CNS that damage itch-transducing, conducting, or processing neurons appear to be capable of causing neuropathic itch.
Treating neuropathic itch is difficult; antihistamines, corticosteroids, and most pain medications are largely ineffective. Current treatment recommendations include local or systemic administration of inhibitors of neuronal excitability (especially local anesthetics) and physical barriers to reduce scratching.\(^2\) In the reported cases of neuropathic pain due to CNS tumors in children, surgical excision of the tumor resulted in complete resolution of pruritus in 50% of cases, and in 1 case, pruritus improved but did not completely resolve. However, 2 cases had persistent neurologic deficits and pruritus after surgical resection of the tumor. This might reflect incomplete resection of the tumor, damage to the itch transmitting neurons during surgery, or long-term changes in the neuronal microenvironment causing persistent neuronal firing.

On the basis of our literature review, the most common intramedullary neoplasms associated with pruritus in the pediatric population include astrocytoma (66%), followed by glioma (34%). To our knowledge, this is the first reported case of ganglioglioma presenting as intractable scratching. Ganglioglioma is a very rare, benign, slow-growing CNS tumor that mainly affects children. It occurs predominantly in the supratentorial area and presents with chronic seizures. Spinal cord ganglioglioma constitutes 1% of all intramedullary tumors and can present with limb weakness. Malignant transformation of ganglioglioma has been reported. Thus, early complete surgical resection is the treatment of choice. The role of adjuvant chemotherapy or radiotherapy remains controversial. Because of the risk of tumor recurrence, close clinical follow-up after surgery is recommended.\(^1\)

In conclusion, as our case represents, localized pruritus may be a clue to the presence of a spinal cord tumor in a child without any focal neurologic findings. Considering the morbidity associated with undiagnosed CNS lesions, detailed neurologic examination and neuroimaging should be considered in children with persistent localized pruritus in the absence of any other causes for pruritus.

Accepted for Publication: October 19, 2012.

Correspondence: Razieh Soltani-Arabshahi, MD, Department of Dermatology, 4A330 School of Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT 84109 (razi.soltani@hsc.utah.edu).

Author Contributions: All authors had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Soltani-Arabshahi, and Vanderhooft. Acquisition of data: Soltani-Arabshahi, Vanderhooft, and Hansen. Analysis and interpretation of data: Soltani-Arabshahi and Hansen. Drafting of the manuscript: Soltani-Arabshahi. Critical revision of the manuscript for important intellectual content: Vanderhooft and Hansen. Administrative, technical, and material support: Soltani-Arabshahi and Vanderhooft. Study supervision: Hansen.

Conflict of Interest Disclosures: None reported.

Additional Contributions: Richard Boyer, MD, Department of Radiology, Primary Children’s Medical Center, Salt Lake City, Utah, interpreted the magnetic resonance images.

REFERENCES

Top-Accessed Article: Combination Gel of 1% Amitriptyline and 0.5% Ketamine to Treat Refractory Erythromelalgia Pain

Sandroni P, Davis MP. Combination gel of 1% amitriptyline and 0.5% ketamine to treat refractory erythromelalgia pain: a new treatment option? *Arch Dermatol*. 2006;142(3):283-286.

Erythromelalgia is a rare skin disorder characterized by severe burning pain, warmth, and erythema that is aggravated by heat and exercise. It is considered to be a neurovascular disorder associated with a small nerve fiber neuropathy and altered voltage-gated sodium channels. In recent years, neuromodulating agents, such as gabapentin and pregabalin, as well as topical lidocaine, were found to be useful therapies. However, there are cases of erythromelalgia that remain resistant to these conventional therapies and cause extreme suffering. Sandroni and Davis report using a novel treatment featuring combination gel of 1% amitryptiline hydrochloride and 0.5% ketamine hydrochloride in lecithin pluronic organogel applied 4 to 5 times a day in 5 patients with intractable erythromelalgia. In 4 of these patients, a significant response was noted, with the improvement rate ranging from 50% to 95%.

The rationale for this combination can be explained by specific pathways that are targeted. Ketamine is an N-methyl-D aspartate (NMDA) receptor antagonist and a modulator of glutamatergic receptors. This is important since NMDA and glutamate are known to play a key role in neuropathic pain. Amitriptyline is a tricyclic antidepressant, which helps reduces pain in various disorders owing to its ability to block voltage-gated sodium ion channels. While topical application in limited body areas in this study did not lead to systemic absorption, the safety profile of this preparation has not been fully assessed. Nonetheless, this anecdotal report holds promise as a potential treatment for other forms of neuropathic pain and possibly neuropathic itch.

From October 2010 to August 2011, this article was viewed 1504 times on the *JAMA Dermatology* website.

Author Affiliation: Department of Dermatology, Wake Forest University School of Medicine, Winston Salem, North Carolina.

Contact Dr Yosipovitch at Department of Dermatology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (gyosipov@wakehealth.edu).