Check out the online first article titled "Lack of UV-A Protection in Daily Moisturizing Creams." It discusses the importance of sun protection and highlights a practice gap in uv-a protection. The article notes that UV-A can be as harmful as UV-B, yet uv-a filters are not always present in daily moisturizers. The authors call for further research and improvements in skincare to ensure better photoprotection.

For more information, please visit the ARCH DERMATOL website.
protection in sunscreens, and likewise, the degree of UV-A protection in these day creams is unknown. In this study, we report the estimated long-range UV-A1 (340 to 400 nm) protection in popular day creams.

Methods. Twenty-nine facial day creams with claims of broad-spectrum UV coverage were selected on the basis of their sales volume reported on the Web site www.amazon.com. The UV-A protection is estimated based on the concentration and types of UV filters in the products. The criteria for assessing products with adequate UV-A1 protection are (1) the combination of avobenzone (>2%) and octocrylene (>3.6%), with or without ecamsule (2%) and/or (2) the presence of zinc oxide (>5%). These criteria were chosen based on previous work in analyzing degree of UV-A protection in sunscreens via in vitro assay.1,2

Results. The SPF values and UV ingredients of the 29 tested products are listed in the Table. The label SPF values ranged from 15 to 50, and the price of these products ranged from $3 to $64 per ounce. The Figure illustrates the distribution of products according to the UV ingredients.

Six products contained no active ingredients for UV-A1 protection, and 23 products contained active ingredients with UV-A1 protection. Seven of the 23 products contained zinc oxide, but only 3 products contained concentrations greater than 5%. Sixteen products contained avobenzone, but only 3 (products 1, 2, and 7) had the adequate concentration of octocrylene (>3.6%) to prevent photodegradation of avobenzone. Seven (products 5, 16, 17, 21, 23, 25, and 27) of the 16 avobenzone products had very low concentrations of octocrylene (mean concentration, 1.7%), and 6 of the 16 (products 8, 11, 22, 26, and 28) contained octinoxate.

The degree of UV-A protection does not correlate with the price of the product. In fact, product 3, the most expensive product contained no UV-A1 filter.

Table. Description of the 29 Sunscreen-Containing Day Creams Studied

<table>
<thead>
<tr>
<th>Product No.</th>
<th>SPF</th>
<th>Price/oz, $</th>
<th>Homosalate</th>
<th>Octinoxate</th>
<th>Octisalate</th>
<th>Octocrylene</th>
<th>Oxybenzone</th>
<th>Titanium Dioxide</th>
<th>Ensulizole</th>
<th>Avobenzone</th>
<th>Zinc Oxide</th>
<th>Ecamsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>15</td>
<td>8.81</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>15</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>64.71</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>8.35</td>
<td>6</td>
<td>7.5</td>
<td>15</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>1.88</td>
<td>3</td>
<td></td>
<td></td>
<td>5</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>5.20</td>
<td></td>
<td></td>
<td>7.5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>15</td>
<td>11.76</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>3.75</td>
<td></td>
<td>7.5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>15</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td>2.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>2.34</td>
<td></td>
<td>7.5</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>4.81</td>
<td></td>
<td>7.5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>30</td>
<td>13.71</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>10.48</td>
<td></td>
<td>6.7</td>
<td>2.7</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14b</td>
<td>30</td>
<td>8.23</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15b</td>
<td>30</td>
<td>7.29</td>
<td></td>
<td>7.5</td>
<td>7.5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>7.60</td>
<td></td>
<td>7.5</td>
<td>4</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>3.23</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>27.06</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19b</td>
<td>50</td>
<td>16.00</td>
<td></td>
<td>7.5</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>15.00</td>
<td></td>
<td>7</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>30</td>
<td>7.64</td>
<td>12</td>
<td>5</td>
<td>1.7</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>15</td>
<td>11.76</td>
<td></td>
<td>7.5</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>15</td>
<td>11.76</td>
<td></td>
<td>7.5</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24b</td>
<td>20</td>
<td>12.00</td>
<td></td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>7.20</td>
<td>12</td>
<td>5</td>
<td>1.7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>15</td>
<td>17.64</td>
<td></td>
<td>7.5</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>15</td>
<td>14.05</td>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>15</td>
<td>3.89</td>
<td></td>
<td>7.5</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29b</td>
<td>30</td>
<td>5.75</td>
<td></td>
<td>7.5</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: SPF, sun protection factor.

a Blank table cell indicates that the product did not contain the ingredient.

b Product with adequate UV-A protection.

Comment. Day creams with sunscreens need to provide UV-A1 protection. Many consumers, especially women, apply these products on their face as the only source of sunscreens. Unaware that the SPF value does not reflect the degree of UV-A protection, consumers using these products believe they are fully protected from the entire UV spectrum. In fact, for many women who spend most of their time indoors, shielded from sunlight by window glass, UV-A protection is more important than UV-B protection because UV-A penetrates window glass, while UV-B is blocked.3
Despite these limitations, our study shows that many day creams do not offer long-wave UV-A protection. Until sunscreen labeling clearly defines the degree of UV-A protection, dermatologists should educate their patients and the public to select products with ingredients that contain the appropriate concentrations of avobenzone, octocrylene, and ecamsule and/or zinc oxide.

Steven Q. Wang, MD
Jacqueline M. Goulart, BA
Henry W. Lim, MD

Accepted for Publication: November 1, 2010.
Published Online: January 17, 2011. doi:10.1001/archdermatol.2010.406

Author Affiliations: Memorial Sloan-Kettering Cancer Center, New York, New York (Dr Wang and Ms Goulart); and Henry Ford Hospital, Detroit, Michigan (Dr Lim).

Correspondence: Dr Wang, Dermatology Service, Memorial Sloan-Kettering Cancer Center, 136 Mountain View Blvd, Basking Ridge, NJ 07920 (wangs@mskcc.org).

Author Contributions: All authors had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Wang. Analysis and interpretation of data: Wang, Goulart, and Lim. Drafting of the manuscript: Wang, Goulart, and Lim. Critical revision of the manuscript for important intellectual content: Wang, Goulart, and Lim. Administrative, technical, and material support: Goulart. Study supervision: Wang and Lim. Content expert: Lim.

Financial Disclosure: None reported.

PRACTICE GAPS

Failure to Scrutinize Actual UV-A Protection When Recommending Sunscreen-Containing Moisturizing Creams

The deleterious effects of UV-A radiation (UV-A) are important in many areas of dermatology, including cutaneous oncology, photoaging, and connective tissue disorders. Because a fundamental objective in caring for patients is educating them about measures that may reduce the burden of their disease, dermatologists strive to ensure that their patient education is as accurate as possible. For years, dermatologists have been educating the public about the importance of looking beyond the UV-B–specific sun protection factor. We instruct patients to select only those sunscreens and fa-