Gene Expression Patterns of Normal Human Skin, Actinic Keratosis, and Squamous Cell Carcinoma

A Spectrum of Disease Progression

R. Steven Padilla, MD, MBA; Sheldon Sebastian, MD; Zeyu Jiang, PhD; Ingo Nindl, PhD; Richard Larson, MD, PhD

Objectives: To identify and compare the gene expression profiles of actinic keratosis (AK) and squamous cell carcinoma (SCC) and to further clarify critical genetic alterations in the evolution of SCC from normal sun-damaged human skin.

Design: Observational study.

Setting: University practice.

Patients: Skin biopsy specimens were obtained from 16 patients. The specimens included 14 normal non–sun-exposed skin samples, 14 normal sun-exposed skin samples, 5 AKs, and 15 cutaneous SCCs.

Main Outcome Measures: Gene expression profiles from normal non–sun-exposed skin, normal sun-exposed skin, AKs, and SCCs.

In the United States, an individual’s lifetime risk of developing skin cancer is 1 in 5.1 The American Cancer Society1 estimates that there are more than 250,000 new cutaneous squamous cell carcinoma (SCC) diagnoses each year in America. Among SCCs, 2.5% become metastatic and account for substantial morbidity and health care expenditures. A better understanding of the molecular pathologic and critical gene networks involved in the development and progression of cutaneous SCC is needed.

A clear environmental factor that leads to the development of SCC is UV radiation, particularly UV-B (280-320 nm). Squamous cell carcinoma develops from chronically sun-damaged skin. Premalignant changes (ie, UV-damaged skin demonstrating photodamage and phototoaging at the molecular level and at the gross level) can be clinically identified before the development of SCC.2,3 Normal-appearing sun-exposed human skin contains an increased number of TP53-mutated keratinocytes.4,5 In addition to initiating carcinogenic events, sunlight may act as a tumor promoter by favoring the clonal expansion of TP53-mutated keratinocytes.5,6

Actinic keratoses (AKs) are thought to be part of a continuum along the path to the development of SCC. Common skin lesions characterized pathologically by epidermal dysplasia, AKs are clinically identified as irregularly shaped scaly papules on sun-damaged skin. Approximately 20% to 27% of cutaneous SCCs arise in an AK or within 8 mm of an AK.6 Forty percent of cutaneous SCCs appear in clinically normal non–sun-exposed skin.6 The development of AK is associated with gene alterations caused by sun exposure. The most commonly mutated gene in AK is TP53.2,10-13 Other common mutations include ras genes, c-myc protooncogenes, p16INK4a tumor suppressor genes, and associated telomerase activity.14,15 Actinic keratoses are considered precancerous, and the genetic relationship between AK and SCC has not been clearly defined, although abnormal gene expression in SCC is well known.

Squamous cell carcinoma is a malignant neoplasm derived from skin keratinocytes. Earlier studies analyzing SCC have shown altered gene expression in these dysplastic...
keratinocytes.11,12 Studies of metastatic SCC have evaluated changes in proteases, adhesion molecules, and growth regulation pathways.16,17 Specific matrix metalloproteinases (MMP-2, MMP-7, and MMP-12) have been detected in SCC, along with the expression of E-cadherens and P-cadherens.16,17

The objectives of our study were to identify and compare the gene expression profiles of AK and SCC and to further clarify critical genetic alterations in the evolution of SCC from normal sun-damaged human skin. Using microarray techniques, we identified progressive alterations in the gene expression patterns of human keratinocytes at different disease stages.

METHODS

PATIENT DEMOGRAPHICS

Patients included in this study had biopsy-proved SCC at the Department of Dermatology, University of New Mexico. At the time of SCC treatment, patients provided informed consent and were enrolled into the study. Human research review committee approval was obtained for all study participants. Up to 4 samples were collected from 16 patients and consisted of specimens from normal non–sun-exposed skin, normal sun-exposed skin, AK, and SCC.

Following surgical removal of each specimen, a "rough" microdissection was performed to remove surrounding normal tissue. The fresh tissue was then snap frozen in liquid nitrogen and transported to the laboratory for RNA isolation using a nontoxic aqueous reagent designed to protect RNA from degradation that does not dissolve or disrupt the structure of tissue (RNA later; Ambion, Austin, Texas). High-density gene microarray studies were then performed on all RNA samples. As summarized in Table 1, most of our patients were male (>$4:1$), which is higher than the 2:1 ratio of men to women generally seen for cutaneous SCC. A total of 48 samples were analyzed. Not all samples were suitable for microarray studies; 4 of 48 specimens analyzed included normal non–sun-exposed skin, normal sun-exposed skin, AK, and SCC samples from the same patient.

STATISTICAL MICROARRAY ANALYSIS

We used order-restricted inference as an exploratory tool to identify gene expression patterns, and we performed prediction analy-
sis of microarrays (PAM) for gene selection and supervised class prediction. PAM uses a nearest shrunken centroid classifier to develop a predictive signature for 2 or more classes. As an improvement over the standard nearest centroid classification, PAM also “shrinks” each of the class centroids toward its overall mean, termed a threshold, to improve the prediction accuracy. PAM has become the criterion standard for comparison of microarray data among groups. PAM applies k-fold cross-validation in selecting the optimal number of genes by controlling overall and individual class cross-validation error rates. The maximal k is set to the least number of samples in all classes. In addition, we performed multiple analyses using PAM by setting different random number seeds. Although the resultant ranking of genes stayed the same, the “optimal” number of genes based on cross-validation usually changes with different runs, and we averaged the results from 6 runs. Hierarchical clustering was performed using the R package gplots (http://cran.rproject.org/src/contrib/Descriptions/gplots.html). Principal component analysis (PCA) was accomplished in R, for which a 3-dimensional plot was generated by projecting data points to the first 3 principal components; the image was developed using the R package rgl. To search for gene network pathways, we searched BioCarta, KEGG, and Reactome pathways (http://www.affymetrix.com/products/software/compatible/pathway.affx). Principal component analysis of gene expression was performed using the gplots R package (http://cran.rproject.org/web/packages/gplots).

Our findings indicate that AK and SCC are genetically related. Their similar differentially expressed genes confirm that AK is a precursor lesion of SCC.

OVERALL CHANGE IN GENE EXPRESSION

We initially set out to ascertain whether AK and SCC samples showed different gene expression overall. We used order-restricted inference to analyze 48 patient samples obtained from normal non–sun-exposed skin, normal sun-exposed skin, AKs, and SCCs. Our data revealed direct correlation of abnormal gene expression in the progression of normal skin to AK to SCC (Figure 1). A total of 186 genes were statistically significant at a threshold of P = .0001. Among them, 101 genes were expressed progressively higher along the spectrum of normal non–sun-exposed skin to SCC, and 85 genes were expressed progressively lower along this spectrum of disease. The degree of gene expression was most evident in AK and SCC, whereas normal skin appeared to have minimal alteration of gene expression. Because order-restricted inference is not a multivariate approach, validation of gene sets as a genetic classifier is difficult using this procedure alone. These findings support the concept that AK and SCC are genetically similar.
To determine whether AK and SCC could be distinguished by microarray analysis, we used high-stringency standards to identify 258 "signature genes" (false discovery rate, \(\frac{1}{1021} \) gene), which could then be used to measure the overall pattern of gene expression in the progression from normal skin to actinically damaged skin and ultimately to SCC. We performed PAM to select genes that can predict the clinical outcome of "normal skin" vs AK or SCC based on the U133A 2.0 Plus platform. As shown in Figure 2, the lowest overall cross-validation error rate was 0.43% when choosing a centroid threshold of 6.52, which corresponded to 89 unique genes (eTable, http://www.archdermatol.com). Based on cross-validation, all normal non–sun-exposed or normal sun-exposed cases were correctly classified, and only 1 case of AK or SCC was erroneously classified as a normal non–sun-exposed or normal sun-exposed case.

We then used 89 unique genes identified by PAM and shrunk centroid analysis in a hierarchical cluster analysis (Figure 3). Hierarchical clustering of samples and genes delineates distinct clustering of AK or SCC skin.
and normal non–sun-exposed or normal sun-exposed skin. This analysis demonstrates the genetic relationship between the lesions studied. We identified the following 2 gene families, without any outliers: (1) an SCC family consisting of 21 AK and SCC clustered samples and (2) a normal skin family consisting of 27 clustered normal skin samples (non–sun exposed and sun exposed). In addition, our molecular classifier revealed the following 2 distinct gene groups: (1) genes with upregulated expression in AK and SCC and (2) genes with downregulated expression in AK and SCC. The opposite expression profile was found in the normal skin samples. This provides strong evidence that the genetic alterations leading to AK and SCC are similar. It is notable that 5 of 6 AKs clustered in a subgroup of the SCC family, although a subset of genes that statistically distinguished AK and SCC could not be identified.

CROSS-VALIDATION STUDY

To assess independent verification of the molecular classifier obtained in our study, we used data by Nindl et al19 from 15 U133A gene microarrays to identify differentially expressed genes in AK and SCC. This platform was compatible with the U133A 2.0 Plus platform used for our analysis. Their data set included 4 AK, 5 SCC, and 6 normal skin specimens. A set of 118 genes was presented in their study, with none showing a statistically significant difference between AK and SCC. After normalizing their data, we found an overlap of 99 common genes with our 89-member gene classifier. Those 99 common genes were used to ascertain how well we could predict the clinical samples from their study. Our 99-gene classifier was able to predict with 100% accuracy the origin of their samples (ie, normal skin vs AK or SCC) (Table 2). In addition, the heat map (Figure 4) shows hierarchical clustering of the samples and genes and again outlines adjacent clustering of AK or SCC samples and normal skin samples. This provides further evidence that our gene classifier is a legitimate tool for distinguishing AK and SCC.

Table 2. Results From Our Prediction Analysis of Microarrays Model for 15 Patient Samples From the Study by Nindl et al19 Using 63 Common Genes From the 89-Member Gene Classifier*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Diagnosis by Nindl et al19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal Skin</td>
</tr>
<tr>
<td>Predicted diagnosis using our 99-member gene classifier</td>
<td>6</td>
</tr>
<tr>
<td>Actual diagnosis</td>
<td>6</td>
</tr>
</tbody>
</table>

Abbreviations: AK, actinic keratosis; SCC, squamous cell carcinoma.
*For further information, see the hierarchical clustering in Figure 4.

Figure 4. Cross-validation dendrogram of 15 data samples from the study by Nindl et al.19 Clear clustering between actinic keratosis (AK) or squamous cell carcinoma (SCC) samples and normal skin (NORM) is evident (red indicates upregulated genes; green, downregulated genes). Samples are depicted in the columns, and genes are depicted in the rows. s_at indicates specific hybridization; x_at, less specific gene target.

out to evaluate the entire spectrum of disease leading to SCC. Based on human samples obtained from non–sun-exposed and sun-exposed skin, AK and SCC in our analysis demonstrate a continuum and an expansion of gene expression along this disease spectrum. The upregulation and downregulation of genes shown in Figure 1 were continual among common genes in normal skin and became dramatically more expressed in AK and SCC. Furthermore, hierarchical clustering demonstrated that AK and SCC are closely related genetically and can be distinguished from benign lesions. Whether these genes are causal and are the critical carcinogenic events that trigger the evolution of UV-damaged skin to SCC is unclear, but our results identify potential novel genes to investigate for their role in skin carcinogenesis.

To our knowledge, this work is the first to identify genetic signatures that clearly distinguish genetic predictors of AK or SCC. Using a highly stringent shrunken centroid threshold of 6.52 (Figure 2) and PAM, we identified 89 unique genes that most likely contribute to the molecular evolution of SCC. Our model clearly distinguishes between skin tumors (AK and SCC) and nor-
mal skin independent of sun exposure. As illustrated by the heat map (Figure 3), 2 distinct gene groups were apparent. Genes that were upregulated in AK and SCC were inherently downregulated in normal skin and vice versa. We validated these findings using data from a previous study19 that was unsuccessful in identifying genetic signatures for AK or SCC. The 89-member gene classifier herein clearly distinguished AK or SCC lesions from normal skin but not from each other. Although some of the gene classifiers are not entirely specific and it is possible that some gene classifiers may demonstrate overlapping results, they may overlap with several other related genes. As a result, it is impossible to determine whether a specific hybridization and a less specific gene target are indeed identical. Although the initial induction, progression, and sequential relationships are unclear, the gene predictors can be explored to determine their role in disease progression. Our data suggest a close and likely interdependence of gene families between AK and SCC.

This study reveals gene family correlation and critical commonalities and differences among AK, SCC, and clinically benign skin. Further studies should focus on the interrelationship of the key carcinogenic genes that lead to SCC and how their relative expression or sequence of expression influences clinical behavior. Clear elucidation of these relationships will be critical to improving therapeutic approaches.

Accepted for Publication: July 8, 2009.
Correspondence: Sheldon Sebastian, MD, Dermatology and Skin Cancer Center, 11550 Granada, Leawood, KS 66211 (sheldon.sebastian@gmail.com).

Author Contributions: Drs Padilla, Sebastian, and Nindl had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Padilla. Acquisition of data: Padilla and Nindl. Analysis and interpretation of data: Padilla, Sebastian, Jiang, and Larson. Drafting of the manuscript: Padilla and Sebastian. Critical revision of the manuscript for important intellectual content: Nindl and Larson. Obtained funding: Padilla.

Financial Disclosure: None reported.

Online-Only Material: An eTable is available at http://www.archdermatol.com.

REFERENCES

©2010 American Medical Association. All rights reserved.