Study |

Resistance of Acellular Dermal Matrix Materials to Microbial Penetration

Elizabeth N. Fahrenbach, MD; Chao Qi, PhD; Omer Ibrahim, MD; John Y. Kim, MD; Murad Alam, MD, MSCI
JAMA Dermatol. 2013;149(5):571-575. doi:10.1001/jamadermatol.2013.1741.
Text Size: A A A
Published online

Importance Acellular dermal matrices have many current and potential applications, but their long-term safety has not been extensively studied. In particular, limited information exists regarding such materials' resistance to infection.

Objective To assess the resistance to microbial penetration of common acellular dermal matrix materials used in reconstruction after skin cancer excision, treatment of chronic ulcers and burns, breast reconstruction, hernia repairs, and other applications.

Design Comparative in vitro study of 4 commercially available dermal substitutes for their ability to act as barriers to penetration by common skin pathogens.

Setting University-based dermatology and plastic surgery departments and a hospital microbiology laboratory.

Materials Four commercially available dermal substitutes, including AlloDerm (LifeCell), FlexHD (Musculoskeletal Transplant Foundation), Strattice (LifeCell), and NeoForm (Mentor Corporation).

Intervention We tested the 4 dermal matrix materials with the following 4 organisms commonly implicated in wound infections: Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pyogenes, and Candida albicans. Each material was inoculated with the same concentration of each pathogen.

Main Outcome Measure The number of bacterial colonies grown on blood agar plates.

Results AlloDerm and rehydrated FlexHD were found to be the best barriers to penetration by P aeruginosa. AlloDerm, FlexHD, and Strattice also prevented penetration by S aureus and S pyogenes; NeoForm was less effective in withstanding these organisms. The results of this study were inconclusive with regard to C albicans penetration.

Conclusions and Relevance Three of the 4 commonly used acellular dermal matrix materials are resistant to in vitro penetration by S aureus and S pyogenes and partially resistant to P aeruginosa. Resistance to fungal pathogens is uncertain. Antimicrobial differences across matrix materials may influence their selection for particular uses, such as treatment of refractory leg ulcers or reconstruction after skin cancer excision.

Sign In to Access Full Content

Don't have Access?

Register and get free email Table of Contents alerts, saved searches, PowerPoint downloads, CME quizzes, and more

Subscribe for full-text access to content from 1998 forward and a host of useful features

Activate your current subscription (AMA members and current subscribers)

Purchase Online Access to this article for 24 hours





Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment


Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Topics
PubMed Articles